Suppr超能文献

模拟扫视动作选择:皮层和基底神经节信号在上丘汇聚。

Modeling Saccadic Action Selection: Cortical and Basal Ganglia Signals Coalesce in the Superior Colliculus.

作者信息

Coe Brian C, Trappenberg Thomas, Munoz Douglas P

机构信息

Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.

出版信息

Front Syst Neurosci. 2019 Feb 13;13:3. doi: 10.3389/fnsys.2019.00003. eCollection 2019.

Abstract

The distributed nature of information processing in the brain creates a complex variety of decision making behavior. Likewise, computational models of saccadic decision making behavior are numerous and diverse. Here we present a generative model of saccadic action selection in the context of competitive decision making in the superior colliculus (SC) in order to investigate how independent neural signals may converge to interact and guide saccade selection, and to test if systematic variations can better replicate the variability in responses that are part of normal human behavior. The model was tasked with performing pro- and anti-saccades in order to replicate specific attributes of healthy human saccade behavior. Participants (ages 18-39) were instructed to either look toward (pro-saccade, well-practiced automated response) or away from (anti-saccade, combination of inhibitory and voluntary responses) a peripheral visual stimulus. They generated express and regular latency saccades in the pro-saccade task. In the anti-saccade task, correct reaction times were longer and participants occasionally looked at the stimulus (direction error) at either express or regular latencies. To gain a better understanding of the underlying neural processes that lead to saccadic action selection and response inhibition, we implemented 8 inputs inspired by systems neuroscience. These inputs reflected known sensory, automated, voluntary, and inhibitory components of cortical and basal ganglia activity that coalesces in the intermediate layers of the SC (SCi). The model produced bimodal reaction time distributions, where express and regular latency saccades had distinct modes, for both correct pro-saccades and direction errors in the anti-saccade task. Importantly, express and regular latency direction errors resulted from interactions of different inputs in the model. Express latency direction errors were due to a lack of pre-emptive fixation and inhibitory activity, which aloud sensory and automated inputs to initiate a stimulus-driven saccade. Regular latency errors occurred when the automated motor signals were stronger than the voluntary motor signals. While previous models have emulated fewer aspects of these behavioral findings, the focus of the simulations here is on the interaction of a wide variety of physiologically-based information integration producing a richer set of natural behavioral variability.

摘要

大脑中信息处理的分布式特性产生了复杂多样的决策行为。同样,扫视决策行为的计算模型众多且各不相同。在此,我们提出一个上丘(SC)竞争性决策背景下的扫视动作选择生成模型,以研究独立的神经信号如何汇聚相互作用并引导扫视选择,并测试系统变化是否能更好地复制正常人类行为中反应的变异性。该模型的任务是执行顺向和逆向扫视,以复制健康人类扫视行为的特定属性。参与者(年龄18 - 39岁)被指示要么看向(顺向扫视,熟练的自动反应)要么远离(逆向扫视,抑制性和自愿性反应的组合)外周视觉刺激。他们在顺向扫视任务中产生了快速和常规潜伏期的扫视。在逆向扫视任务中,正确反应时间更长,参与者偶尔在快速或常规潜伏期看向刺激物(方向错误)。为了更好地理解导致扫视动作选择和反应抑制的潜在神经过程,我们基于系统神经科学实现了8个输入。这些输入反映了已知的皮质和基底神经节活动的感觉、自动、自愿和抑制成分,这些成分在SC的中间层(SCi)汇聚。该模型产生了双峰反应时间分布,对于顺向扫视任务中的正确反应和逆向扫视任务中的方向错误,快速和常规潜伏期扫视都有不同的模式。重要的是,快速和常规潜伏期方向错误是由模型中不同输入的相互作用导致的。快速潜伏期方向错误是由于缺乏抢先注视和抑制性活动,这使得感觉和自动输入能够启动刺激驱动的扫视。当自动运动信号强于自愿运动信号时,就会出现常规潜伏期错误。虽然之前的模型模拟这些行为发现的方面较少,但这里模拟的重点是多种基于生理的信息整合的相互作用,产生了更丰富的自然行为变异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验