Suppr超能文献

磷酸钙生物陶瓷中的第一排过渡金属掺杂:一项详细的晶体学研究。

First-Row Transition Metal Doping in Calcium Phosphate Bioceramics: A Detailed Crystallographic Study.

作者信息

Renaudin Guillaume, Gomes Sandrine, Nedelec Jean-Marie

机构信息

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.

出版信息

Materials (Basel). 2017 Jan 23;10(1):92. doi: 10.3390/ma10010092.

Abstract

Doped calcium phosphate bioceramics are promising materials for bone repair surgery because of their chemical resemblance to the mineral constituent of bone. Among these materials, BCP samples composed of hydroxyapatite (Ca(PO₄)₆(OH)₂) and β-TCP (Ca₃(PO₄)₂) present a mineral analogy with the nano-multi-substituted hydroxyapatite bio-mineral part of bones. At the same time, doping can be used to tune the biological properties of these ceramics. This paper presents a general overview of the doping mechanisms of BCP samples using cations from the first-row transition metals (from manganese to zinc), with respect to the applied sintering temperature. The results enable the preparation of doped synthetic BCP that can be used to tailor biological properties, in particular by tuning the release amounts upon interaction with biological fluids. Intermediate sintering temperatures stabilize the doping elements in the more soluble β-TCP phase, which favors quick and easy release upon integration in the biological environment, whereas higher sintering temperatures locate the doping elements in the weakly soluble HAp phase, enabling a slow and continuous supply of the bio-inspired properties. An interstitial doping mechanism in the HAp hexagonal channel is observed for the six investigated cations (Mn, Fe, Co, Ni, Cu and Zn) with specific characteristics involving a shift away from the center of the hexagonal channel (Fe, Co), cationic oxidation (Mn, Co), and also cationic reduction (Cu⁺). The complete crystallochemical study highlights a complex HAp doping mechanism, mainly realized by an interstitial process combined with calcium substitution for the larger cations of the series leading to potentially calcium deficient HAp.

摘要

掺杂的磷酸钙生物陶瓷因其与骨矿物质成分的化学相似性,是骨修复手术中有前景的材料。在这些材料中,由羟基磷灰石(Ca(PO₄)₆(OH)₂)和β-磷酸三钙(Ca₃(PO₄)₂)组成的BCP样品与骨的纳米多取代羟基磷灰石生物矿物部分具有矿物相似性。同时,掺杂可用于调节这些陶瓷的生物学性能。本文概述了使用第一行过渡金属(从锰到锌)的阳离子对BCP样品进行掺杂的机制,以及所应用的烧结温度。这些结果使得能够制备掺杂的合成BCP,可用于定制生物学性能,特别是通过调节与生物流体相互作用时的释放量。中间烧结温度使掺杂元素稳定在更易溶解的β-磷酸三钙相中,这有利于在整合到生物环境中时快速且容易地释放,而较高的烧结温度使掺杂元素位于难溶性的羟基磷灰石相中,能够缓慢且持续地提供仿生性能。对于所研究的六种阳离子(锰、铁、钴、镍、铜和锌),在羟基磷灰石六方通道中观察到一种间隙掺杂机制,其具有特定特征,包括偏离六方通道中心(铁、钴)、阳离子氧化(锰、钴)以及阳离子还原(Cu⁺)。完整的晶体化学研究突出了一种复杂的羟基磷灰石掺杂机制,主要通过间隙过程与该系列较大阳离子的钙取代相结合来实现,从而导致可能缺钙的羟基磷灰石。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9178/5344588/80228d0b17e2/materials-10-00092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验