Suppr超能文献

残留深度卷积神经网络预测 MGMT 甲基化状态。

Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status.

机构信息

Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.

Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.

出版信息

J Digit Imaging. 2017 Oct;30(5):622-628. doi: 10.1007/s10278-017-0009-z.

Abstract

Predicting methylation of the O6-methylguanine methyltransferase (MGMT) gene status utilizing MRI imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare three different residual deep neural network (ResNet) architectures to evaluate their ability in predicting MGMT methylation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture was the best performing model, achieving an accuracy of 94.90% (+/- 3.92%) for the test set (classification of a slice as no tumor, methylated MGMT, or non-methylated). ResNet34 (34 layers) achieved 80.72% (+/- 13.61%) while ResNet18 (18 layers) accuracy was 76.75% (+/- 20.67%). ResNet50 performance was statistically significantly better than both ResNet18 and ResNet34 architectures (p < 0.001). We report a method that alleviates the need of extensive preprocessing and acts as a proof of concept that deep neural architectures can be used to predict molecular biomarkers from routine medical images.

摘要

利用 MRI 成像预测 O6-甲基鸟嘌呤甲基转移酶(MGMT)基因甲基化状态非常重要,因为它是脑肿瘤反应和预后的预测因子。在这项研究中,我们比较了三种不同的剩余深度神经网络(ResNet)架构,以评估它们在无需进行特定肿瘤分割步骤的情况下预测 MGMT 甲基化状态的能力。我们发现 ResNet50(50 层)架构是表现最佳的模型,在测试集中的准确率为 94.90%(+/- 3.92%)(对切片进行无肿瘤、甲基化 MGMT 或非甲基化 MGMT 的分类)。ResNet34(34 层)的准确率为 80.72%(+/- 13.61%),而 ResNet18(18 层)的准确率为 76.75%(+/- 20.67%)。ResNet50 的性能明显优于 ResNet18 和 ResNet34 两种架构(p<0.001)。我们报告了一种方法,减轻了广泛预处理的需求,并证明了深度神经网络架构可用于从常规医学图像中预测分子生物标志物。

相似文献

1
Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status.
J Digit Imaging. 2017 Oct;30(5):622-628. doi: 10.1007/s10278-017-0009-z.
2
3
Adaptive fine-tuning based transfer learning for the identification of MGMT promoter methylation status.
Biomed Phys Eng Express. 2024 Jul 30;10(5):055018. doi: 10.1088/2057-1976/ad6573.
4
MRI-Based Deep-Learning Method for Determining Glioma Promoter Methylation Status.
AJNR Am J Neuroradiol. 2021 May;42(5):845-852. doi: 10.3174/ajnr.A7029. Epub 2021 Mar 4.
5
An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging.
Neuroimage. 2010 Jan 15;49(2):1398-405. doi: 10.1016/j.neuroimage.2009.09.049. Epub 2009 Sep 28.
7
Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
Eur J Radiol. 2019 Dec;121:108714. doi: 10.1016/j.ejrad.2019.108714. Epub 2019 Oct 19.
10
Volumetric and MGMT parameters in glioblastoma patients: survival analysis.
BMC Cancer. 2012 Jan 3;12:3. doi: 10.1186/1471-2407-12-3.

引用本文的文献

2
Emerging Trends in Artificial Intelligence in Neuro-Oncology.
Curr Oncol Rep. 2025 Jun 12. doi: 10.1007/s11912-025-01688-w.
7
Radiomic and deep learning analysis of dermoscopic images for skin lesion pattern decoding.
Sci Rep. 2024 Aug 26;14(1):19781. doi: 10.1038/s41598-024-70231-x.
8
Radiogenomics as an Integrated Approach to Glioblastoma Precision Medicine.
Curr Oncol Rep. 2024 Oct;26(10):1213-1222. doi: 10.1007/s11912-024-01580-z. Epub 2024 Jul 16.
9
Deep learning modeling using mammography images for predicting estrogen receptor status in breast cancer.
Am J Transl Res. 2024 Jun 15;16(6):2411-2422. doi: 10.62347/PUHR6185. eCollection 2024.
10
Uses of artificial intelligence in glioma: A systematic review.
Med Int (Lond). 2024 May 20;4(4):40. doi: 10.3892/mi.2024.164. eCollection 2024 Jul-Aug.

本文引用的文献

1
Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma.
Comput Methods Programs Biomed. 2017 Mar;140:249-257. doi: 10.1016/j.cmpb.2016.12.018. Epub 2016 Dec 30.
2
A deep learning approach for the analysis of masses in mammograms with minimal user intervention.
Med Image Anal. 2017 Apr;37:114-128. doi: 10.1016/j.media.2017.01.009. Epub 2017 Jan 28.
3
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
Med Phys. 2017 Feb;44(2):533-546. doi: 10.1002/mp.12079.
4
Deep learning for automated skeletal bone age assessment in X-ray images.
Med Image Anal. 2017 Feb;36:41-51. doi: 10.1016/j.media.2016.10.010. Epub 2016 Oct 29.
6
High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks.
J Digit Imaging. 2017 Feb;30(1):95-101. doi: 10.1007/s10278-016-9914-9.
7
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas.
Med Phys. 2016 Jun;43(6):2835-2844. doi: 10.1118/1.4948668.
8
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1207-1216. doi: 10.1109/TMI.2016.2535865. Epub 2016 Feb 29.
9
Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition.
IEEE Trans Med Imaging. 2016 May;35(5):1332-1343. doi: 10.1109/TMI.2016.2524985. Epub 2016 Feb 3.
10
MIRMAID: A Content Management System for Medical Image Analysis Research.
Radiographics. 2015 Sep-Oct;35(5):1461-8. doi: 10.1148/rg.2015140031. Epub 2015 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验