Suppr超能文献

关节内纤维软骨损伤的治疗进展:聚焦于颞下颌关节

A review of in-vitro fibrocartilage tissue engineered therapies with a focus on the temporomandibular joint.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260, United States.

Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States.

出版信息

Arch Oral Biol. 2017 Nov;83:193-201. doi: 10.1016/j.archoralbio.2017.07.013. Epub 2017 Jul 23.

Abstract

The inability of fibrocartilage, specifically the temporomandibular joint (TMJ) disc, to regenerate and remodel following injury presents a unique problem for clinicians. Tissue engineering then offers a potential regenerative therapy. In vitro testing provides a valuable screening tool for potential tissue engineered solutions. The conclusions drawn for TMJ in vitro research were compared against state of the art fibrocartilage studies in the knee meniscus, and annulus fibrosus of the intervertebral disc (IVD). For TMJ disc regeneration, in vitro tissue engineered approaches, focused on cellular therapies with fibrochondrocytes, have displayed an inability to produce enough collagen, as well as an inability to recapitulate native mechanical properties. Biomaterial approaches have recapitulated the native properties of the TMJ disc, but their in vivo efficacy has yet to be determined. By comparison, the knee meniscus field is the most progressive in the use of stem cells as a cell source. The knee meniscus field has moved away from measuring mechanical properties, and are instead more focused on biochemistry and gene expression. IVD studies mainly use electrospun scaffolds, and have produced the best success in mechanical properties. The TMJ field, in comparison to knee meniscus and IVD, needs to employ stem cell therapies, new biomaterials and manufacturing techniques, and cutting edge molecular assays, in future in vitro approaches to screen for viable technologies to move to in vivo studies.

摘要

纤维软骨(尤其是颞下颌关节 [TMJ] 盘)在受伤后无法再生和重塑,这对临床医生来说是一个独特的问题。组织工程为再生治疗提供了一种潜在的方法。体外测试为潜在的组织工程解决方案提供了有价值的筛选工具。将 TMJ 的体外研究结论与膝关节半月板和椎间盘纤维环的最先进纤维软骨研究进行了比较。对于 TMJ 盘的再生,体外组织工程方法侧重于纤维软骨细胞的细胞疗法,但显示出无法产生足够的胶原蛋白,以及无法再现天然机械性能。生物材料方法再现了 TMJ 盘的天然特性,但它们的体内疗效尚未确定。相比之下,膝关节半月板领域在使用干细胞作为细胞来源方面最具创新性。膝关节半月板领域已经不再测量机械性能,而是更加关注生物化学和基因表达。椎间盘研究主要使用静电纺丝支架,在机械性能方面取得了最好的效果。与膝关节半月板和椎间盘相比,TMJ 领域需要在未来的体外方法中采用干细胞疗法、新型生物材料和制造技术以及前沿的分子分析,以筛选可行的技术并推进体内研究。

相似文献

1
A review of in-vitro fibrocartilage tissue engineered therapies with a focus on the temporomandibular joint.
Arch Oral Biol. 2017 Nov;83:193-201. doi: 10.1016/j.archoralbio.2017.07.013. Epub 2017 Jul 23.
2
Comparison of temporomandibular joint disc, meniscus, and intervertebral disc in fundamental characteristics and tissue engineering.
J Biomed Mater Res B Appl Biomater. 2023 Mar;111(3):717-729. doi: 10.1002/jbm.b.35178. Epub 2022 Oct 11.
3
Tissue engineering of the temporomandibular joint disc: current status and future trends.
Int J Artif Organs. 2015 Feb;38(2):55-68. doi: 10.5301/ijao.5000393. Epub 2015 Mar 2.
4
Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.
Curr Osteoporos Rep. 2016 Dec;14(6):269-279. doi: 10.1007/s11914-016-0327-y.
5
The mechanics of tissue-engineered temporomandibular joint discs: Current status and prospects for enhancement.
J Biomater Appl. 2024 Oct;39(4):269-287. doi: 10.1177/08853282241265059. Epub 2024 Jul 18.
6
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.
Osteoarthritis Cartilage. 2009 Mar;17(3):346-53. doi: 10.1016/j.joca.2008.07.004. Epub 2008 Aug 28.
7
[Cell sources for engineered temporomandibular joint disc tissue: present and future].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010 Apr;27(2):463-6.
9
Scaffold-Based Temporomandibular Joint Tissue Regeneration in Experimental Animal Models: A Systematic Review.
Tissue Eng Part B Rev. 2018 Aug;24(4):300-316. doi: 10.1089/ten.TEB.2017.0429. Epub 2018 Mar 8.

引用本文的文献

2
FSP1/S100A4-Expressing Stem/Progenitor Cells Are Essential for Temporomandibular Joint Growth and Homeostasis.
J Dent Res. 2025 May;104(5):551-560. doi: 10.1177/00220345251313795. Epub 2025 Feb 14.
3
Tunable Blended Collagen I/II and Collagen I/III Hydrogels as Tissue Mimics.
Macromol Biosci. 2024 Dec;24(12):e2400280. doi: 10.1002/mabi.202400280. Epub 2024 Oct 20.
4
Synthetic materials in craniofacial regenerative medicine: A comprehensive overview.
Front Bioeng Biotechnol. 2022 Nov 9;10:987195. doi: 10.3389/fbioe.2022.987195. eCollection 2022.
5
3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration.
Chem Mater. 2020 Oct 13;32(19):8733-8746. doi: 10.1021/acs.chemmater.0c03556. Epub 2020 Sep 25.
7
Research status of biodegradable metals designed for oral and maxillofacial applications: A review.
Bioact Mater. 2021 Apr 27;6(11):4186-4208. doi: 10.1016/j.bioactmat.2021.01.011. eCollection 2021 Nov.
8
Recent update on craniofacial tissue engineering.
J Tissue Eng. 2021 Apr 20;12:20417314211003735. doi: 10.1177/20417314211003735. eCollection 2021 Jan-Dec.

本文引用的文献

2
The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.
J Orthop Surg Res. 2017 Mar 9;12(1):39. doi: 10.1186/s13018-017-0534-y.
3
Cartilage tissue engineering: Role of mesenchymal stem cells along with growth factors & scaffolds.
Indian J Med Res. 2016 Sep;144(3):339-347. doi: 10.4103/0971-5916.198724.
4
Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.
Curr Osteoporos Rep. 2016 Dec;14(6):269-279. doi: 10.1007/s11914-016-0327-y.
5
Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration.
Biofabrication. 2016 Apr 25;8(2):025003. doi: 10.1088/1758-5090/8/2/025003.
6
Meniscus repair using mesenchymal stem cells - a comprehensive review.
Stem Cell Res Ther. 2015 Apr 30;6(1):86. doi: 10.1186/s13287-015-0077-2.
7
Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds.
J Biomech. 2015 Jun 1;48(8):1412-9. doi: 10.1016/j.jbiomech.2015.02.036. Epub 2015 Feb 26.
8
Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue.
Tissue Eng Part A. 2015 Apr;21(7-8):1195-206. doi: 10.1089/ten.TEA.2014.0362. Epub 2015 Feb 9.
9
Neocartilage integration in temporomandibular joint discs: physical and enzymatic methods.
J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.1075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验