Costa João B, Park Jihoon, Jorgensen Adam M, Silva-Correia Joana, Reis Rui L, Oliveira Joaquim M, Atala Anthony, Yoo James J, Lee Sang Jin
Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
Chem Mater. 2020 Oct 13;32(19):8733-8746. doi: 10.1021/acs.chemmater.0c03556. Epub 2020 Sep 25.
Advanced strategies to bioengineer a fibrocartilaginous tissue to restore the function of the meniscus are necessary. Currently, 3D bioprinting technologies have been employed to fabricate clinically relevant patient-specific complex constructs to address unmet clinical needs. In this study, a highly elastic hybrid construct for fibrocartilaginous regeneration is produced by co-printing a cell-laden gellan gum/fibrinogen (GG/FB) composite bioink together with a silk fibroin methacrylate (Sil-MA) bioink in an interleaved crosshatch pattern. We characterize each bioink formulation by measuring the rheological properties, swelling ratio, and compressive mechanical behavior. For biological evaluations, porcine primary meniscus cells (pMCs) are isolated and suspended in the GG/FB bioink for the printing process. The results show that the GG/FB bioink provides a proper cellular microenvironment for maintaining the cell viability and proliferation capacity, as well as the maturation of the pMCs in the bioprinted constructs, while the Sil-MA bioink offers excellent biomechanical behavior and structural integrity. More importantly, this bioprinted hybrid system shows the fibrocartilaginous tissue formation without a dimensional change in a mouse subcutaneous implantation model during the 10-week postimplantation. Especially, the alignment of collagen fibers is achieved in the bioprinted hybrid constructs. The results demonstrate this bioprinted mechanically reinforced hybrid construct offers a versatile and promising alternative for the production of advanced fibrocartilaginous tissue.
采用先进的生物工程策略来构建纤维软骨组织以恢复半月板功能是必要的。目前,3D生物打印技术已被用于制造临床相关的患者特异性复杂结构,以满足未满足的临床需求。在本研究中,通过将负载细胞的结冷胶/纤维蛋白原(GG/FB)复合生物墨水与甲基丙烯酸丝素蛋白(Sil-MA)生物墨水以交错交叉图案共打印,制备了一种用于纤维软骨再生的高弹性混合结构。我们通过测量流变学性质、溶胀率和压缩力学行为来表征每种生物墨水配方。为了进行生物学评估,分离猪原代半月板细胞(pMCs)并将其悬浮在GG/FB生物墨水中用于打印过程。结果表明,GG/FB生物墨水为维持细胞活力和增殖能力以及生物打印构建体中pMCs的成熟提供了合适的细胞微环境,而Sil-MA生物墨水具有出色的生物力学行为和结构完整性。更重要的是,这种生物打印的混合系统在小鼠皮下植入模型中植入后10周内显示出纤维软骨组织形成且无尺寸变化。特别是,在生物打印的混合构建体中实现了胶原纤维的排列。结果表明,这种生物打印的机械增强混合构建体为先进纤维软骨组织的生产提供了一种通用且有前景的替代方案。