Suppr超能文献

生物修复 3.0:在系统生物学时代工程化污染物去除细菌。

Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.

机构信息

Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.

The Novo Nordisk Foundation Center for Biosustainability, 2800 Lyngby, Denmark.

出版信息

Biotechnol Adv. 2017 Nov 15;35(7):845-866. doi: 10.1016/j.biotechadv.2017.08.001. Epub 2017 Aug 5.

Abstract

Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow.

摘要

工业和城市活动向环境中排放的化学废物的毒性的消除或减轻在很大程度上依赖于微生物的催化活性——特别是细菌。由于它们具有快速进化的能力,它们具有生物化学的力量来处理通过人类活动从地质库中动员的大量分子(例如,碳氢化合物、重金属)或通过化学合成产生的分子(例如,外来化合物)。虽然自然存在的微生物已经具有相当大的能力在没有外部干预的情况下去除许多环境污染物,但 20 世纪 80 年代基因工程的出现使得细菌能够合理设计以代谢特定化合物成为可能,这些化合物最终可以作为生物修复剂释放到环境中。尽管如此,这种努力的复杂性和缺乏基础知识导致了仅仅十年后基于重组 DNA 的生物修复的几乎完全放弃。出乎意料的是,在过去的几年里,出现了新的系统领域(包括系统和合成生物学以及代谢工程),这些领域允许通过全新的、更强大的方法来重新审视同样的环境污染挑战。由于人为温室气体排放和全球范围内塑料废物积累等重大问题,对污染场地和化学物质的关注已经扩大。在本文中,我们分析了当代系统生物学如何帮助将生物修复剂的设计带回环境生物技术的核心。我们检查了几种最近的代谢途径构建和优化策略,并通过提出一个工程工作流程将它们结合在一起。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验