Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Neuroimage. 2010 Sep;52(3):1041-58. doi: 10.1016/j.neuroimage.2009.12.081. Epub 2010 Jan 4.
Neural mass models (NMMs) explain dynamics of neuronal populations and were designed to strike a balance between mathematical simplicity and biological plausibility. They are currently widely used as generative models for noninvasive electrophysiological brain measurements; that is, magneto- and electroencephalography (M/EEG). Here, we systematically describe the oscillatory regimes which a NMM of a single cortical source with extrinsic input from other cortical and subcortical areas to each subpopulation can explain. For this purpose, we used bifurcation analysis to describe qualitative changes in system behavior in response to quantitative input changes. This approach allowed us to describe sequences of oscillatory regimes, given some specific input trajectory. We systematically classified these sequential phenomena and mapped them into parameter space. Our analysis suggests a principled scheme of how complex M/EEG phenomena can be modeled parsimoniously on two time scales: While the system displays fast oscillations, it slowly traverses phase space to another qualitatively different oscillatory regime, depending on the input dynamics. The resulting scheme is useful for applications where one needs to model an ordered sequence of switching between qualitatively different oscillatory regimes, for example, in pharmacological interventions, epilepsy, sleep, or context-induced state changes.
神经质量模型(NMMs)解释神经元群体的动力学,并旨在在数学简单性和生物学合理性之间取得平衡。它们目前被广泛用作来自其他皮质和皮质下区域的外来输入的单个皮质源的非侵入性电生理脑测量的生成模型;即,磁和脑电图(M / EEG)。在这里,我们系统地描述了具有来自其他皮质和皮质下区域的每个亚群的外来输入的单个皮质源的 NMM 可以解释的振荡状态。为此,我们使用分岔分析来描述系统行为对定量输入变化的定性变化。这种方法使我们能够在给定特定输入轨迹的情况下描述振荡状态的序列。我们系统地对这些顺序现象进行分类,并将其映射到参数空间中。我们的分析表明,在两个时间尺度上可以合理地简化建模复杂的 M / EEG 现象的原则方案:当系统显示快速振荡时,它会根据输入动态缓慢遍历相空间到另一个定性不同的振荡状态。所得方案对于需要在定性不同的振荡状态之间进行有序切换序列建模的应用程序很有用,例如在药理学干预,癫痫,睡眠或上下文引起的状态变化中。