Suppr超能文献

利用 GPS 测量评估荷兰农村人口的流动性。

Mobility assessment of a rural population in the Netherlands using GPS measurements.

机构信息

Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands.

Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology and Veterinary Public Health (EEPI-VPH), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.

出版信息

Int J Health Geogr. 2017 Aug 9;16(1):30. doi: 10.1186/s12942-017-0103-y.

Abstract

BACKGROUND

The home address is a common spatial proxy for exposure assessment in epidemiological studies but mobility may introduce exposure misclassification. Mobility can be assessed using self-reports or objectively measured using GPS logging but self-reports may not assess the same information as measured mobility. We aimed to assess mobility patterns of a rural population in the Netherlands using GPS measurements and self-reports and to compare GPS measured to self-reported data, and to evaluate correlates of differences in mobility patterns.

METHOD

In total 870 participants filled in a questionnaire regarding their transport modes and carried a GPS-logger for 7 consecutive days. Transport modes were assigned to GPS-tracks based on speed patterns. Correlates of measured mobility data were evaluated using multiple linear regression. We calculated walking, biking and motorised transport durations based on GPS and self-reported data and compared outcomes. We used Cohen's kappa analyses to compare categorised self-reported and GPS measured data for time spent outdoors.

RESULTS

Self-reported time spent walking and biking was strongly overestimated when compared to GPS measurements. Participants estimated their time spent in motorised transport accurately. Several variables were associated with differences in mobility patterns, we found for instance that obese people (BMI > 30 kg/m) spent less time in non-motorised transport (GMR 0.69-0.74) and people with COPD tended to travel longer distances from home in motorised transport (GMR 1.42-1.51).

CONCLUSIONS

If time spent walking outdoors and biking is relevant for the exposure to environmental factors, then relying on the home address as a proxy for exposure location may introduce misclassification. In addition, this misclassification is potentially differential, and specific groups of people will show stronger misclassification of exposure than others. Performing GPS measurements and identifying explanatory factors of mobility patterns may assist in regression calibration of self-reports in other studies.

摘要

背景

家庭住址是流行病学研究中评估暴露的常用空间替代指标,但移动性可能会导致暴露分类错误。移动性可以通过自我报告或使用 GPS 记录进行客观测量来评估,但自我报告可能无法评估与测量移动性相同的信息。我们旨在使用 GPS 测量和自我报告评估荷兰农村人口的移动模式,并比较 GPS 测量值和自我报告数据,并评估移动模式差异的相关因素。

方法

共有 870 名参与者填写了一份关于他们交通方式的问卷,并连续 7 天携带 GPS 记录器。根据速度模式将交通方式分配到 GPS 轨迹。使用多元线性回归评估与测量移动性数据相关的因素。我们根据 GPS 和自我报告数据计算步行、骑自行车和机动交通的持续时间,并比较结果。我们使用 Cohen's kappa 分析比较户外时间的分类自我报告和 GPS 测量数据。

结果

与 GPS 测量值相比,自我报告的步行和骑自行车时间被严重高估。参与者准确估计了他们在机动交通中的时间。几个变量与移动模式的差异相关,例如,肥胖者(BMI>30kg/m)在非机动交通中花费的时间较少(GMR 0.69-0.74),患有 COPD 的人在机动交通中离家的距离往往更长(GMR 1.42-1.51)。

结论

如果户外步行和骑自行车时间与环境因素暴露有关,那么将家庭住址作为暴露地点的替代指标可能会导致分类错误。此外,这种分类错误可能是有差异的,特定人群的暴露分类错误可能比其他人更严重。进行 GPS 测量并确定移动模式的解释因素可能有助于在其他研究中对自我报告进行回归校准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/700c/5551017/b01ed271c5ee/12942_2017_103_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验