Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9273-9278. doi: 10.1073/pnas.1704908114. Epub 2017 Aug 15.
Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions.
超分辨率荧光显微镜可以在超越经典衍射极限的分辨率下对标记的超分子组装体进行成像。超分辨率方法的一个严重限制是样品异质性和标记过程的随机性。为了提高超分辨率结果的重现性和分辨率,我们应用了最初为单颗粒低温电子显微镜开发的多元统计分析方法和 3D 重建方法。这些方法允许从二维超分辨率投影图像中对纳米分子结构进行无参考的 3D 重建。由于这些 2D 投影图像都显示了光学显微镜的高分辨率方向的结构,因此得到的 3D 重建在所有方向上都具有最佳的各向同性分辨率。