Suppr超能文献

Tn7 样转座子招募 CRISPR-Cas 系统。

Recruitment of CRISPR-Cas systems by Tn7-like transposons.

机构信息

Department of Microbiology, Cornell University, Ithaca, NY 14853;

National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7358-E7366. doi: 10.1073/pnas.1709035114. Epub 2017 Aug 15.

Abstract

A survey of bacterial and archaeal genomes shows that many Tn7-like transposons contain minimal type I-F CRISPR-Cas systems that consist of fused and , , and genes and a short CRISPR array. Several small groups of Tn7-like transposons encompass similarly truncated type I-B CRISPR-Cas. This minimal gene complement of the transposon-associated CRISPR-Cas systems implies that they are competent for pre-CRISPR RNA (precrRNA) processing yielding mature crRNAs and target binding but not target cleavage that is required for interference. Phylogenetic analysis demonstrates that evolution of the CRISPR-Cas-containing transposons included a single, ancestral capture of a type I-F locus and two independent instances of type I-B loci capture. We show that the transposon-associated CRISPR arrays contain spacers homologous to plasmid and temperate phage sequences and, in some cases, chromosomal sequences adjacent to the transposon. We hypothesize that the transposon-encoded CRISPR-Cas systems generate displacement (R-loops) in the cognate DNA sites, targeting the transposon to these sites and thus facilitating their spread via plasmids and phages. These findings suggest the existence of RNA-guided transposition and fit the guns-for-hire concept whereby mobile genetic elements capture host defense systems and repurpose them for different stages in the life cycle of the element.

摘要

对细菌和古菌基因组的调查表明,许多 Tn7 样转座子包含最小的 I-F 型 CRISPR-Cas 系统,该系统由融合的 和 、 和 基因以及短的 CRISPR 阵列组成。几个 Tn7 样转座子小群包含类似截断的 I-B 型 CRISPR-Cas。转座子相关的 CRISPR-Cas 系统的最小基因组成表明它们有能力进行前 CRISPR RNA (precrRNA) 加工,产生成熟的 crRNA 和靶标结合,但不进行干扰所需的靶标切割。系统发育分析表明,CRISPR-Cas 包含转座子的进化包括单个、祖先捕获 I-F 型基因座和两个独立的 I-B 型基因座捕获实例。我们表明,转座子相关的 CRISPR 数组包含与质粒和温和噬菌体序列同源的间隔序列,并且在某些情况下,与转座子相邻的染色体序列。我们假设转座子编码的 CRISPR-Cas 系统在同源 DNA 位点产生位移(R-环),将转座子靶向这些位点,从而促进它们通过质粒和噬菌体进行传播。这些发现表明存在 RNA 指导的转位,并符合雇佣枪支的概念,即移动遗传元件捕获宿主防御系统,并将其重新用于元件生命周期的不同阶段。

相似文献

1
Recruitment of CRISPR-Cas systems by Tn7-like transposons.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7358-E7366. doi: 10.1073/pnas.1709035114. Epub 2017 Aug 15.
2
Dual modes of CRISPR-associated transposon homing.
Cell. 2021 Apr 29;184(9):2441-2453.e18. doi: 10.1016/j.cell.2021.03.006. Epub 2021 Mar 25.
3
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Genome Biol Evol. 2017 Oct 1;9(10):2812-2825. doi: 10.1093/gbe/evx192.
4
Metagenomic discovery of CRISPR-associated transposons.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2112279118.
5
Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
Annu Rev Biochem. 2024 Aug;93(1):139-161. doi: 10.1146/annurev-biochem-030122-041908. Epub 2024 Jul 2.
6
CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species.
BMC Genomics. 2019 Feb 4;20(1):105. doi: 10.1186/s12864-019-5439-1.
7
Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons.
Cell. 2020 Dec 23;183(7):1757-1771.e18. doi: 10.1016/j.cell.2020.11.005. Epub 2020 Dec 2.
8
Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond.
Mol Microbiol. 2019 Dec;112(6):1635-1644. doi: 10.1111/mmi.14383. Epub 2019 Sep 18.
9
Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
Mol Cell. 2022 Feb 3;82(3):616-628.e5. doi: 10.1016/j.molcel.2021.12.021. Epub 2022 Jan 19.

引用本文的文献

1
Advances in large-scale DNA engineering with the CRISPR system.
Exp Mol Med. 2025 Sep 1. doi: 10.1038/s12276-025-01530-0.
2
UltraCAST: A Flexible All-In-One Suicide Vector for Modifying Bacterial Genomes Using a CRISPR-Associated Transposon.
MicroPubl Biol. 2025 Aug 2;2025. doi: 10.17912/micropub.biology.001721. eCollection 2025.
3
CRISPR-Cas in actinomycetes: still a lot to be discovered.
Microlife. 2025 Jun 12;6:uqaf010. doi: 10.1093/femsml/uqaf010. eCollection 2025.
4
Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase.
Science. 2025 May 15;388(6748):eadt5199. doi: 10.1126/science.adt5199.
7
Unveiling Cas8 dynamics and regulation within a transposon-encoded Cascade-TniQ complex.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2422895122. doi: 10.1073/pnas.2422895122. Epub 2025 Apr 2.
9
Integration of therapeutic cargo into the human genome with programmable type V-K CAST.
Nat Commun. 2025 Mar 13;16(1):2427. doi: 10.1038/s41467-025-57416-2.
10
TIGR-Tas: A family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses.
Science. 2025 May;388(6746):eadv9789. doi: 10.1126/science.adv9789. Epub 2025 May 1.

本文引用的文献

1
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
2
A decade of discovery: CRISPR functions and applications.
Nat Microbiol. 2017 Jun 5;2:17092. doi: 10.1038/nmicrobiol.2017.92.
3
CRISPR-Cas: Adapting to change.
Science. 2017 Apr 7;356(6333). doi: 10.1126/science.aal5056. Epub 2017 Apr 6.
4
Mechanisms for initiating cellular DNA replication.
Science. 2017 Feb 24;355(6327). doi: 10.1126/science.aah6317. Epub 2017 Feb 16.
6
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
7
New CRISPR-Cas systems from uncultivated microbes.
Nature. 2017 Feb 9;542(7640):237-241. doi: 10.1038/nature21059. Epub 2016 Dec 22.
8
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147.
9
Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system.
Nucleic Acids Res. 2016 Jul 8;44(12):5872-82. doi: 10.1093/nar/gkw469. Epub 2016 May 23.
10
Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system.
Genes Dev. 2016 Feb 15;30(4):447-59. doi: 10.1101/gad.272153.115. Epub 2016 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验