Department of Microbiology, Cornell University, Ithaca, NY 14853;
National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7358-E7366. doi: 10.1073/pnas.1709035114. Epub 2017 Aug 15.
A survey of bacterial and archaeal genomes shows that many Tn7-like transposons contain minimal type I-F CRISPR-Cas systems that consist of fused and , , and genes and a short CRISPR array. Several small groups of Tn7-like transposons encompass similarly truncated type I-B CRISPR-Cas. This minimal gene complement of the transposon-associated CRISPR-Cas systems implies that they are competent for pre-CRISPR RNA (precrRNA) processing yielding mature crRNAs and target binding but not target cleavage that is required for interference. Phylogenetic analysis demonstrates that evolution of the CRISPR-Cas-containing transposons included a single, ancestral capture of a type I-F locus and two independent instances of type I-B loci capture. We show that the transposon-associated CRISPR arrays contain spacers homologous to plasmid and temperate phage sequences and, in some cases, chromosomal sequences adjacent to the transposon. We hypothesize that the transposon-encoded CRISPR-Cas systems generate displacement (R-loops) in the cognate DNA sites, targeting the transposon to these sites and thus facilitating their spread via plasmids and phages. These findings suggest the existence of RNA-guided transposition and fit the guns-for-hire concept whereby mobile genetic elements capture host defense systems and repurpose them for different stages in the life cycle of the element.
对细菌和古菌基因组的调查表明,许多 Tn7 样转座子包含最小的 I-F 型 CRISPR-Cas 系统,该系统由融合的 和 、 和 基因以及短的 CRISPR 阵列组成。几个 Tn7 样转座子小群包含类似截断的 I-B 型 CRISPR-Cas。转座子相关的 CRISPR-Cas 系统的最小基因组成表明它们有能力进行前 CRISPR RNA (precrRNA) 加工,产生成熟的 crRNA 和靶标结合,但不进行干扰所需的靶标切割。系统发育分析表明,CRISPR-Cas 包含转座子的进化包括单个、祖先捕获 I-F 型基因座和两个独立的 I-B 型基因座捕获实例。我们表明,转座子相关的 CRISPR 数组包含与质粒和温和噬菌体序列同源的间隔序列,并且在某些情况下,与转座子相邻的染色体序列。我们假设转座子编码的 CRISPR-Cas 系统在同源 DNA 位点产生位移(R-环),将转座子靶向这些位点,从而促进它们通过质粒和噬菌体进行传播。这些发现表明存在 RNA 指导的转位,并符合雇佣枪支的概念,即移动遗传元件捕获宿主防御系统,并将其重新用于元件生命周期的不同阶段。