Suppr超能文献

利用影响扩散模型确定疾病中的因果 miRNAs 及其信号级联。

Determining causal miRNAs and their signaling cascade in diseases using an influence diffusion model.

机构信息

Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.

Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India.

出版信息

Sci Rep. 2017 Aug 15;7(1):8133. doi: 10.1038/s41598-017-08125-4.

Abstract

In recent studies, miRNAs have been found to be extremely influential in many of the essential biological processes. They exhibit a self-regulatory mechanism through which they act as positive/negative regulators of expression of genes and other miRNAs. This has direct implications in the regulation of various pathophysiological conditions, signaling pathways and different types of cancers. Studying miRNA-disease associations has been an extensive area of research; however deciphering miRNA-miRNA network regulatory patterns in several diseases remains a challenge. In this study, we use information diffusion theory to quantify the influence diffusion in a miRNA-miRNA regulation network across multiple disease categories. Our proposed methodology determines the critical disease specific miRNAs which play a causal role in their signaling cascade and hence may regulate disease progression. We extensively validate our framework using existing computational tools from the literature. Furthermore, we implement our framework on a comprehensive miRNA expression data set for alcohol dependence and identify the causal miRNAs for alcohol-dependency in patients which were validated by the phase-shift in their expression scores towards the early stages of the disease. Finally, our computational framework for identifying causal miRNAs implicated in diseases is available as a free online tool for the greater scientific community.

摘要

在最近的研究中,miRNA 被发现对许多基本的生物过程具有极其重要的影响。它们通过自我调节机制,作为基因和其他 miRNA 表达的正/负调节剂发挥作用。这直接影响各种病理生理状况、信号通路和不同类型癌症的调控。研究 miRNA-疾病的关联一直是一个广泛的研究领域,然而在几种疾病中破译 miRNA-miRNA 网络调控模式仍然是一个挑战。在这项研究中,我们使用信息扩散理论来量化 miRNA-miRNA 调控网络在多个疾病类别中的影响扩散。我们提出的方法确定了关键的疾病特异性 miRNA,这些 miRNA 在其信号级联中起着因果作用,因此可能调节疾病的进展。我们使用文献中的现有计算工具对我们的框架进行了广泛验证。此外,我们在一个全面的 miRNA 表达数据集上实施了我们的框架,用于识别酒精依赖症中的因果 miRNA,并通过其表达分数向疾病早期阶段的相位偏移来验证患者的酒精依赖症因果 miRNA。最后,我们用于识别疾病中因果 miRNA 的计算框架作为一个免费的在线工具提供给更广泛的科学界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e66/5557952/f2ec07d754fa/41598_2017_8125_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验