Suppr超能文献

用于潜在人类微小RNA-疾病关联推断的半监督学习

Semi-supervised learning for potential human microRNA-disease associations inference.

作者信息

Chen Xing, Yan Gui-Ying

机构信息

1] National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, 100190, China [2] Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Sci Rep. 2014 Jun 30;4:5501. doi: 10.1038/srep05501.

Abstract

MicroRNAs play critical role in the development and progression of various diseases. Predicting potential miRNA-disease associations from vast amount of biological data is an important problem in the biomedical research. Considering the limitations in previous methods, we developed Regularized Least Squares for MiRNA-Disease Association (RLSMDA) to uncover the relationship between diseases and miRNAs. RLSMDA can work for diseases without known related miRNAs. Furthermore, it is a semi-supervised (does not need negative samples) and global method (prioritize associations for all the diseases simultaneously). Based on leave-one-out cross validation, reliable AUC have demonstrated the reliable performance of RLSMDA. We also applied RLSMDA to Hepatocellular cancer and Lung cancer and implemented global prediction for all the diseases simultaneously. As a result, 80% (Hepatocellular cancer) and 84% (Lung cancer) of top 50 predicted miRNAs and 75% of top 20 potential associations based on global prediction have been confirmed by biological experiments. We also applied RLSMDA to diseases without known related miRNAs in golden standard dataset. As a result, in the top 3 potential related miRNA list predicted by RLSMDA for 32 diseases, 34 disease-miRNA associations were successfully confirmed by experiments. It is anticipated that RLSMDA would be a useful bioinformatics resource for biomedical researches.

摘要

微小RNA在多种疾病的发生和发展过程中发挥着关键作用。从海量生物数据中预测潜在的微小RNA-疾病关联是生物医学研究中的一个重要问题。考虑到以往方法的局限性,我们开发了用于微小RNA-疾病关联的正则化最小二乘法(RLSMDA),以揭示疾病与微小RNA之间的关系。RLSMDA可用于没有已知相关微小RNA的疾病。此外,它是一种半监督方法(不需要负样本)和全局方法(同时对所有疾病的关联进行优先级排序)。基于留一法交叉验证,可靠的AUC已证明RLSMDA的可靠性能。我们还将RLSMDA应用于肝细胞癌和肺癌,并同时对所有疾病进行全局预测。结果,基于全局预测的前50个预测微小RNA中,80%(肝细胞癌)和84%(肺癌)以及前20个潜在关联中的75%已通过生物学实验得到证实。我们还将RLSMDA应用于金标准数据集中没有已知相关微小RNA的疾病。结果,在RLSMDA为32种疾病预测的前3个潜在相关微小RNA列表中,有34种疾病-微小RNA关联通过实验成功得到证实。预计RLSMDA将成为生物医学研究中有用的生物信息学资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7402/4074792/bed7bffd51e1/srep05501-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验