Suppr超能文献

级联大小分布:为何重要以及如何高效计算它们。

Cascade Size Distributions: Why They Matter and How to Compute Them Efficiently.

作者信息

Burkholz Rebekka, Quackenbush John

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115.

Harvard Medical School, Boston, MA 02115.

出版信息

Proc AAAI Conf Artif Intell. 2021;35(8):6840-6849. doi: 10.1609/aaai.v35i8.16844. Epub 2021 May 18.

Abstract

Cascade models are central to understanding, predicting, and controlling epidemic spreading and information propagation. Related optimization, including influence maximization, model parameter inference, or the development of vaccination strategies, relies heavily on sampling from a model. This is either inefficient or inaccurate. As alternative, we present an efficient message passing algorithm that computes the probability distribution of the cascade size for the Independent Cascade Model on weighted directed networks and generalizations. Our approach is exact on trees but can be applied to any network topology. It approximates locally treelike networks well, scales to large networks, and can lead to surprisingly good performance on more dense networks, as we also exemplify on real world data.

摘要

级联模型对于理解、预测和控制流行病传播及信息传播至关重要。相关的优化,包括影响力最大化、模型参数推断或疫苗接种策略的制定,在很大程度上依赖于从模型中进行采样。这要么效率低下,要么不准确。作为替代方案,我们提出了一种高效的消息传递算法,该算法可计算加权有向网络及推广模型上独立级联模型的级联规模概率分布。我们的方法在树状结构上是精确的,但可应用于任何网络拓扑。它能很好地近似局部树状网络,可扩展到大型网络,并且在更密集的网络上也能带来令人惊讶的良好性能,正如我们在真实世界数据上所举例说明的那样。

相似文献

1
Cascade Size Distributions: Why They Matter and How to Compute Them Efficiently.级联大小分布:为何重要以及如何高效计算它们。
Proc AAAI Conf Artif Intell. 2021;35(8):6840-6849. doi: 10.1609/aaai.v35i8.16844. Epub 2021 May 18.
2
Tensor Network Message Passing.张量网络消息传递
Phys Rev Lett. 2024 Mar 15;132(11):117401. doi: 10.1103/PhysRevLett.132.117401.
5
Message passing approach for general epidemic models.通用传染病模型的消息传递方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016101. doi: 10.1103/PhysRevE.82.016101. Epub 2010 Jul 2.
6
7
Optimal deployment of resources for maximizing impact in spreading processes.资源的最优部署以最大化传播过程中的影响力。
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8138-E8146. doi: 10.1073/pnas.1614694114. Epub 2017 Sep 12.
10
Dynamic message-passing equations for models with unidirectional dynamics.具有单向动力学模型的动态消息传递方程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012811. doi: 10.1103/PhysRevE.91.012811. Epub 2015 Jan 13.

本文引用的文献

1
Gene regulatory network inference as relaxed graph matching.基因调控网络推断作为松弛图匹配
Proc AAAI Conf Artif Intell. 2021 Feb;35(11):10263-10272. Epub 2021 May 18.
6
8
The spread of true and false news online.网络上真实和虚假新闻的传播。
Science. 2018 Mar 9;359(6380):1146-1151. doi: 10.1126/science.aap9559.
9
Optimal deployment of resources for maximizing impact in spreading processes.资源的最优部署以最大化传播过程中的影响力。
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8138-E8146. doi: 10.1073/pnas.1614694114. Epub 2017 Sep 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验