Burkholz Rebekka, Quackenbush John
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115.
Harvard Medical School, Boston, MA 02115.
Proc AAAI Conf Artif Intell. 2021;35(8):6840-6849. doi: 10.1609/aaai.v35i8.16844. Epub 2021 May 18.
Cascade models are central to understanding, predicting, and controlling epidemic spreading and information propagation. Related optimization, including influence maximization, model parameter inference, or the development of vaccination strategies, relies heavily on sampling from a model. This is either inefficient or inaccurate. As alternative, we present an efficient message passing algorithm that computes the probability distribution of the cascade size for the Independent Cascade Model on weighted directed networks and generalizations. Our approach is exact on trees but can be applied to any network topology. It approximates locally treelike networks well, scales to large networks, and can lead to surprisingly good performance on more dense networks, as we also exemplify on real world data.
级联模型对于理解、预测和控制流行病传播及信息传播至关重要。相关的优化,包括影响力最大化、模型参数推断或疫苗接种策略的制定,在很大程度上依赖于从模型中进行采样。这要么效率低下,要么不准确。作为替代方案,我们提出了一种高效的消息传递算法,该算法可计算加权有向网络及推广模型上独立级联模型的级联规模概率分布。我们的方法在树状结构上是精确的,但可应用于任何网络拓扑。它能很好地近似局部树状网络,可扩展到大型网络,并且在更密集的网络上也能带来令人惊讶的良好性能,正如我们在真实世界数据上所举例说明的那样。