Suppr超能文献

基于虚拟现实的裁剪模拟样片的融合验证和学习迁移研究。

Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator.

机构信息

Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY, 12180, USA.

University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA.

出版信息

Surg Endosc. 2018 Mar;32(3):1265-1272. doi: 10.1007/s00464-017-5802-8. Epub 2017 Aug 15.

Abstract

INTRODUCTION

Research has clearly shown the benefits of surgical simulators to train laparoscopic motor skills required for positive patient outcomes. We have developed the Virtual Basic Laparoscopic Skill Trainer (VBLaST) that simulates tasks from the Fundamentals of Laparoscopic Surgery (FLS) curriculum. This study aims to show convergent validity of the VBLaST pattern cutting module via the CUSUM method to quantify learning curves along with motor skill transfer from simulation environments to ex vivo tissue samples.

METHODS

18 medical students at the University at Buffalo, with no prior laparoscopic surgical skills, were placed into the control, FLS training, or VBLaST training groups. Each training group performed pattern cutting trials for 12 consecutive days on their respective simulation trainers. Following a 2-week break period, the trained students performed three pattern cutting trials on each simulation platform to measure skill retention. All subjects then performed one pattern cutting task on ex vivo cadaveric peritoneal tissue. FLS and VBLaST pattern cutting scores, CUSUM scores, and transfer task completion times were reported.

RESULTS

Results indicate that the FLS and VBLaST trained groups have significantly higher task performance scores than the control group in both the VBLaST and FLS environments (p < 0.05). Learning curve results indicate that three out of seven FLS training subjects and four out of six VBLaST training subjects achieved the "senior" performance level. Furthermore, both the FLS and VBLaST trained groups had significantly lower transfer task completion times on ex vivo peritoneal tissue models (p < 0.05).

CONCLUSION

We characterized task performance scores for trained VBLaST and FLS subjects via CUSUM analysis of the learning curves and showed evidence that both groups have significant improvements in surgical motor skill. Furthermore, we showed that learned surgical skills in the FLS and VBLaST environments transfer not only to the different simulation environments, but also to ex vivo tissue models.

摘要

简介

研究清楚地表明了手术模拟器在培训腹腔镜手术所需的基本技能方面的优势,以获得积极的患者结果。我们开发了虚拟基础腹腔镜技能训练器(VBLaST),它模拟了基础腹腔镜手术(FLS)课程的任务。本研究旨在通过累积和和定量学习曲线的方法来证明 VBLaST 模式切割模块的收敛有效性,以及从模拟环境到离体组织样本的运动技能转移。

方法

布法罗大学的 18 名医学生没有腹腔镜手术技能,他们被分为对照组、FLS 培训组或 VBLaST 培训组。每个培训组在各自的模拟培训器上连续进行 12 天的模式切割试验。在 2 周的休息期后,受过训练的学生在每个模拟平台上进行 3 次模式切割试验,以测量技能保持情况。所有受试者随后在离体尸体腹膜组织上进行了 1 次模式切割任务。报告了 FLS 和 VBLaST 的模式切割评分、CUSUM 评分和转移任务完成时间。

结果

结果表明,在 VBLaST 和 FLS 环境中,接受 FLS 和 VBLaST 培训的组的任务表现评分明显高于对照组(p < 0.05)。学习曲线结果表明,7 名 FLS 培训受试者中有 3 名和 6 名 VBLaST 培训受试者中有 4 名达到了“高级”表现水平。此外,接受 FLS 和 VBLaST 培训的组在离体腹膜组织模型上的转移任务完成时间明显较低(p < 0.05)。

结论

我们通过对学习曲线的 CUSUM 分析,对接受训练的 VBLaST 和 FLS 受试者的任务表现评分进行了特征描述,并表明两组在手术运动技能方面都有显著提高。此外,我们还表明,在 FLS 和 VBLaST 环境中获得的手术技能不仅可以转移到不同的模拟环境,还可以转移到离体组织模型。

相似文献

2
Validation of the VBLaST pattern cutting task: a learning curve study.验证 VBLaST 样式裁剪任务:学习曲线研究。
Surg Endosc. 2018 Apr;32(4):1990-2002. doi: 10.1007/s00464-017-5895-0. Epub 2017 Oct 19.
5
Validation of the VBLaST: A Virtual Peg Transfer Task in Gynecologic Surgeons.VBLaST的验证:一项针对妇科外科医生的虚拟栓子转移任务
J Minim Invasive Gynecol. 2015 Nov-Dec;22(7):1271-7. doi: 10.1016/j.jmig.2015.07.015. Epub 2015 Jul 26.
10
Validation of a virtual intracorporeal suturing simulator.验证一种虚拟的腔内缝合模拟器。
Surg Endosc. 2019 Aug;33(8):2468-2472. doi: 10.1007/s00464-018-6531-3. Epub 2018 Oct 17.

引用本文的文献

本文引用的文献

3
Face and construct validation of a virtual peg transfer simulator.一种虚拟打桩转移模拟器的面部和结构验证。
Surg Endosc. 2013 May;27(5):1721-9. doi: 10.1007/s00464-012-2664-y. Epub 2012 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验