Suppr超能文献

用于预测时间(4D)细胞组织和图案生物矿化的 3D 打印水凝胶复合材料。

3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.

机构信息

Department of Chemistry, University of Illinois-Urbana Champaign, 600 S. Matthews, Avenue, Urbana, IL, 61801, USA.

Department of Electrical and Computer Engineering, 4055 Beckman Institute, MC 251, 405 N. Mathews, Urbana, IL, 61801, USA.

出版信息

Adv Healthc Mater. 2019 Jan;8(1):e1800788. doi: 10.1002/adhm.201800788. Epub 2018 Nov 22.

Abstract

Materials chemistries for hydrogel scaffolds that are capable of programming temporal (4D) attributes of cellular decision-making in supported 3D microcultures are described. The scaffolds are fabricated using direct-ink writing (DIW)-a 3D-printing technique using extrusion to pattern scaffolds at biologically relevant diameters (≤ 100 µm). Herein, DIW is exploited to variously incorporate a rheological nanoclay, Laponite XLG (LAP), into 2-hydroxyethyl methacrylate (HEMA)-based hydrogels-printing the LAP-HEMA (LH) composites as functional modifiers within otherwise unmodified 2D and 3D HEMA microstructures. The nanoclay-modified domains, when tested as thin films, require no activating (e.g., protein) treatments to promote robust growth compliances that direct the spatial attachment of fibroblast (3T3) and preosteoblast (E1) cells, fostering for the latter a capacity to direct long-term osteodifferentiation. Cell-to-gel interfacial morphologies and cellular motility are analyzed with spatial light interference microscopy (SLIM). Through combination of HEMA and LH gels, high-resolution DIW of a nanocomposite ink (UniH) that translates organizationally dynamic attributes seen with 2D gels into dentition-mimetic 3D scaffolds is demonstrated. These analyses confirm that the underlying materials chemistry and geometry of hydrogel nanocomposites are capable of directing cellular attachment and temporal development within 3D microcultures-a useful material system for the 4D patterning of hydrogel scaffolds.

摘要

用于水凝胶支架的材料化学,能够对 3D 微培养物中细胞决策的时间(4D)属性进行编程。支架是使用直接墨水书写(DIW)-一种使用挤压在生物相关直径(≤100 µm)下对支架进行图案化的 3D 打印技术来制造的。在此,DIW 被用于将流变纳米粘土 Laponite XLG(LAP)不同地掺入 2-羟乙基甲基丙烯酸酯(HEMA)基水凝胶中-将 LAP-HEMA(LH)复合材料打印为功能改性剂,而其余未改性的 2D 和 3D HEMA 微结构。当作为薄膜进行测试时,纳米粘土改性的区域不需要激活(例如蛋白质)处理来促进稳健的生长顺应性,该顺应性直接指导成纤维细胞(3T3)和前成骨细胞(E1)细胞的空间附着,促进后者具有长期成骨分化的能力。通过空间光干涉显微镜(SLIM)分析细胞与凝胶的界面形态和细胞迁移。通过 HEMA 和 LH 凝胶的组合,展示了一种纳米复合油墨(UniH)的高分辨率 DIW,该油墨可将 2D 凝胶中观察到的组织动态属性转化为齿状仿生 3D 支架。这些分析证实了水凝胶纳米复合材料的基础材料化学和几何形状能够在 3D 微培养物中指导细胞附着和时间发展-这是水凝胶支架 4D 图案化的有用材料系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验