Schlipf Lukas, Oeckinghaus Thomas, Xu Kebiao, Dasari Durga Bhaktavatsala Rao, Zappe Andrea, de Oliveira Felipe Fávaro, Kern Bastian, Azarkh Mykhailo, Drescher Malte, Ternes Markus, Kern Klaus, Wrachtrup Jörg, Finkler Amit
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Sci Adv. 2017 Aug 11;3(8):e1701116. doi: 10.1126/sciadv.1701116. eCollection 2017 Aug.
Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.
可扩展量子技术要求在纳米尺度上设计可控量子系统的稳定结构时,具备前所未有的精度与复杂度的组合。找到一种合适的基本构建单元,使量子网络能够以可扩展的方式由其组成,是一项具有挑战性的任务。我们展示了这样一个基本单元的工作原理,它是利用分子化学设计的,其集体控制和读出是通过金刚石中的氮空位(NV)中心来执行的。我们所研究的基本单元是一种合成聚脯氨酸,其电子自旋定域在附着的分子侧基上,这些侧基相隔几纳米。我们展示了对这些S = 1/2电子自旋系统中极少数(≤6个)的集体读出和相干操控,并获取它们的直接偶极耦合张量。我们的结果表明,使用自旋标记肽作为基于分子量子比特的网络资源是可行的,同时通过NV磁力测量能够对单量子态进行简单的光学读出。这项工作为利用成熟的化学方法构建任意量子网络奠定了基础,这在从单分子距离映射到量子信息处理等诸多应用中都有应用。