Mayo Juan C, Sainz Rosa M, González-Menéndez Pedro, Hevia David, Cernuda-Cernuda Rafael
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain.
Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.
Cell Mol Life Sci. 2017 Nov;74(21):3927-3940. doi: 10.1007/s00018-017-2616-8. Epub 2017 Aug 21.
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole's protective actions. Melatonin's mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.
褪黑素是一种广为人知的、在夜间产生的吲哚,存在于细菌、真核单细胞生物、动物或维管植物中。在脊椎动物中,褪黑素是松果体的主要产物,这也是其在黑暗阶段血清中含量增加的原因,但许多其他器官和细胞类型也能产生褪黑素。如此广泛的分布与其多种已被充分描述的功能相一致,这些功能包括从昼夜节律调节和对季节变化的适应到在不同类型肿瘤中的免疫调节和抑癌作用。20世纪90年代初发现其抗氧化特性,开启了其在多种组织中潜在保护功能的新领域。尤其值得一提的是神经系统,在该系统中吲哚被认为是一种主要的神经保护剂。此外,线粒体似乎是吲哚保护作用的最重要靶点之一。褪黑素的作用机制多种多样,从与自由基的直接分子相互作用(自由基清除剂)到与膜(MLT1A和MLT1B)或核受体(RZR/RORα)的结合。受体结合与迄今为止报道的部分而非全部吲哚功能有关。最近,有报道称存在两种涉及易化葡萄糖转运蛋白GLUT/SLC2A和质子驱动寡肽转运蛋白PEPT1/2的新的细胞摄取机制。在此我们讨论这些新发现的转运系统在决定褪黑素作用方面可能具有的潜在重要性,尤其是在线粒体中。我们还讨论了被动扩散与主动转运在细胞不同部位的相对重要性。