Suppr超能文献

线粒体动力学作为癌症生物学的调节因子

Mitochondrial dynamics as regulators of cancer biology.

作者信息

Trotta Andrew Paul, Chipuk Jerry Edward

机构信息

Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY, 10029, USA.

The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY, 10029, USA.

出版信息

Cell Mol Life Sci. 2017 Jun;74(11):1999-2017. doi: 10.1007/s00018-016-2451-3. Epub 2017 Jan 12.

Abstract

Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.

摘要

线粒体是动态细胞器,可提供驱动关键细胞过程所需的能量,如细胞存活、增殖和迁移。线粒体结构的变化对所有这些过程都至关重要,线粒体结构是一种机械机制,包括线粒体网络的融合和分裂(裂变)。线粒体的形状、大小和定位变化以一种受调控的方式发生,以维持能量和代谢稳态,而线粒体动力学失调与代谢功能障碍和疾病的发生有关。在癌症中,驱动过度增殖、增加细胞内应激和限制营养供应的致癌信号都能够改变癌细胞的生物能量和生物合成需求。因此,线粒体功能和形状会迅速适应这些不利条件,以支持癌细胞增殖并逃避细胞死亡程序的激活。在这篇综述中,我们将讨论控制线粒体动力学的分子机制,并整合最近对线粒体形状变化如何影响细胞迁移、分化、凋亡以及新型靶向癌症治疗发展机会的见解。

相似文献

1
Mitochondrial dynamics as regulators of cancer biology.线粒体动力学作为癌症生物学的调节因子
Cell Mol Life Sci. 2017 Jun;74(11):1999-2017. doi: 10.1007/s00018-016-2451-3. Epub 2017 Jan 12.
2
Regulators of mitochondrial dynamics in cancer.癌症中线粒体动力学的调节因子
Curr Opin Cell Biol. 2016 Apr;39:43-52. doi: 10.1016/j.ceb.2016.02.001. Epub 2016 Feb 18.
3
Mitofusins, from Mitochondria to Metabolism.线粒体融合蛋白:从线粒体到代谢
Mol Cell. 2016 Mar 3;61(5):683-694. doi: 10.1016/j.molcel.2016.02.022.
5
The cell biology of mitochondrial membrane dynamics.线粒体膜动力学的细胞生物学。
Nat Rev Mol Cell Biol. 2020 Apr;21(4):204-224. doi: 10.1038/s41580-020-0210-7. Epub 2020 Feb 18.
6
The mitochondrial voltage-dependent anion channel 1 in tumor cells.肿瘤细胞中的线粒体电压依赖性阴离子通道1
Biochim Biophys Acta. 2015 Oct;1848(10 Pt B):2547-75. doi: 10.1016/j.bbamem.2014.10.040. Epub 2014 Nov 4.
8
Mitochondrial dynamics altered by oxidative stress in cancer.癌症中氧化应激改变线粒体动力学。
Free Radic Res. 2016 Oct;50(10):1065-1070. doi: 10.1080/10715762.2016.1210141. Epub 2016 Aug 25.
9
Mitochondrial fission and fusion.线粒体分裂与融合
Biochem Soc Trans. 2016 Dec 15;44(6):1725-1735. doi: 10.1042/BST20160129.
10
Plant mitochondrial dynamics and the role of membrane lipids.植物线粒体动力学与膜脂的作用
Plant Signal Behav. 2015;10(10):e1050573. doi: 10.1080/15592324.2015.1050573. Epub 2015 Aug 28.

引用本文的文献

本文引用的文献

7
Physiological and Pharmacological Control of BAK, BAX, and Beyond.BAK、BAX及其他相关蛋白的生理与药理调控
Trends Cell Biol. 2016 Dec;26(12):906-917. doi: 10.1016/j.tcb.2016.07.002. Epub 2016 Aug 4.
9
Mitochondria and Cancer.线粒体与癌症
Cell. 2016 Jul 28;166(3):555-566. doi: 10.1016/j.cell.2016.07.002.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验