Suppr超能文献

线粒体动力学作为癌症生物学的调节因子

Mitochondrial dynamics as regulators of cancer biology.

作者信息

Trotta Andrew Paul, Chipuk Jerry Edward

机构信息

Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY, 10029, USA.

The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY, 10029, USA.

出版信息

Cell Mol Life Sci. 2017 Jun;74(11):1999-2017. doi: 10.1007/s00018-016-2451-3. Epub 2017 Jan 12.

Abstract

Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.

摘要

线粒体是动态细胞器,可提供驱动关键细胞过程所需的能量,如细胞存活、增殖和迁移。线粒体结构的变化对所有这些过程都至关重要,线粒体结构是一种机械机制,包括线粒体网络的融合和分裂(裂变)。线粒体的形状、大小和定位变化以一种受调控的方式发生,以维持能量和代谢稳态,而线粒体动力学失调与代谢功能障碍和疾病的发生有关。在癌症中,驱动过度增殖、增加细胞内应激和限制营养供应的致癌信号都能够改变癌细胞的生物能量和生物合成需求。因此,线粒体功能和形状会迅速适应这些不利条件,以支持癌细胞增殖并逃避细胞死亡程序的激活。在这篇综述中,我们将讨论控制线粒体动力学的分子机制,并整合最近对线粒体形状变化如何影响细胞迁移、分化、凋亡以及新型靶向癌症治疗发展机会的见解。

相似文献

1
Mitochondrial dynamics as regulators of cancer biology.
Cell Mol Life Sci. 2017 Jun;74(11):1999-2017. doi: 10.1007/s00018-016-2451-3. Epub 2017 Jan 12.
2
Regulators of mitochondrial dynamics in cancer.
Curr Opin Cell Biol. 2016 Apr;39:43-52. doi: 10.1016/j.ceb.2016.02.001. Epub 2016 Feb 18.
3
Mitofusins, from Mitochondria to Metabolism.
Mol Cell. 2016 Mar 3;61(5):683-694. doi: 10.1016/j.molcel.2016.02.022.
4
Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function.
Annu Rev Physiol. 2016;78:505-31. doi: 10.1146/annurev-physiol-021115-105011. Epub 2015 Nov 19.
5
The cell biology of mitochondrial membrane dynamics.
Nat Rev Mol Cell Biol. 2020 Apr;21(4):204-224. doi: 10.1038/s41580-020-0210-7. Epub 2020 Feb 18.
6
The mitochondrial voltage-dependent anion channel 1 in tumor cells.
Biochim Biophys Acta. 2015 Oct;1848(10 Pt B):2547-75. doi: 10.1016/j.bbamem.2014.10.040. Epub 2014 Nov 4.
7
The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells.
Biochim Biophys Acta Rev Cancer. 2018 Apr;1869(2):293-302. doi: 10.1016/j.bbcan.2018.04.004. Epub 2018 Apr 17.
8
Mitochondrial dynamics altered by oxidative stress in cancer.
Free Radic Res. 2016 Oct;50(10):1065-1070. doi: 10.1080/10715762.2016.1210141. Epub 2016 Aug 25.
9
Mitochondrial fission and fusion.
Biochem Soc Trans. 2016 Dec 15;44(6):1725-1735. doi: 10.1042/BST20160129.
10
Plant mitochondrial dynamics and the role of membrane lipids.
Plant Signal Behav. 2015;10(10):e1050573. doi: 10.1080/15592324.2015.1050573. Epub 2015 Aug 28.

引用本文的文献

5
AIMP1 exerts hearing protection role in age related hearing loss mice by regulating SIRT1 expression.
BMC Geriatr. 2025 Aug 20;25(1):645. doi: 10.1186/s12877-025-06237-5.
6
Mechanistic insights into promotion of non-small cell lung cancer by BAG5 using integrative multi-omics approaches.
Front Immunol. 2025 Jul 25;16:1648139. doi: 10.3389/fimmu.2025.1648139. eCollection 2025.
8
Reprogramming of glucose metabolism in pancreatic cancer: mechanisms, implications, and therapeutic perspectives.
Front Immunol. 2025 Jun 24;16:1586959. doi: 10.3389/fimmu.2025.1586959. eCollection 2025.
10
Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design.
Front Pharmacol. 2025 Jan 17;15:1468977. doi: 10.3389/fphar.2024.1468977. eCollection 2024.

本文引用的文献

1
Multiple dynamin family members collaborate to drive mitochondrial division.
Nature. 2016 Dec 1;540(7631):139-143. doi: 10.1038/nature20555. Epub 2016 Oct 31.
2
Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11249-11254. doi: 10.1073/pnas.1606786113. Epub 2016 Sep 19.
3
Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division.
Mol Cell. 2016 Sep 15;63(6):1034-43. doi: 10.1016/j.molcel.2016.08.013.
4
Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?
Nat Rev Cancer. 2016 Oct;16(10):635-49. doi: 10.1038/nrc.2016.77. Epub 2016 Sep 16.
5
A PGC1α-mediated transcriptional axis suppresses melanoma metastasis.
Nature. 2016 Sep 15;537(7620):422-426. doi: 10.1038/nature19347. Epub 2016 Aug 31.
7
Physiological and Pharmacological Control of BAK, BAX, and Beyond.
Trends Cell Biol. 2016 Dec;26(12):906-917. doi: 10.1016/j.tcb.2016.07.002. Epub 2016 Aug 4.
8
Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ ROCK1 pathway.
Biochem Biophys Res Commun. 2016 Sep 16;478(2):663-8. doi: 10.1016/j.bbrc.2016.08.003. Epub 2016 Aug 3.
9
Mitochondria and Cancer.
Cell. 2016 Jul 28;166(3):555-566. doi: 10.1016/j.cell.2016.07.002.
10
Mitochondrial fission - a drug target for cytoprotection or cytodestruction?
Pharmacol Res Perspect. 2016 Apr 21;4(3):e00235. doi: 10.1002/prp2.235. eCollection 2016 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验