Hansen Douglas A, Koch Aaron A, Sherman David H
J Am Chem Soc. 2015 Mar 25;137(11):3735-8. doi: 10.1021/ja511743n. Epub 2015 Mar 12.
Biochemical characterization of polyketide synthases (PKSs) has relied on synthetic substrates functionalized as electrophilic esters to acylate the enzyme and initiate the catalytic cycle. In these efforts, N-acetylcysteamine thioesters have typically been employed for in vitro studies of full PKS modules as well as excised domains. However, substrate engineering approaches to control the catalytic cycle of a full PKS module harboring multiple domains remain underexplored. This study examines a series of alternatively activated native hexaketide substrates on the catalytic outcome of PikAIV, the sixth and final module of the pikromycin (Pik) pathway. We demonstrate the ability to control product formation with greater than 10:1 selectivity for either full module catalysis, leading to a 14-membered macrolactone, or direct cyclization to a 12-membered ring. This outcome was achieved through modifying the type of hexaketide ester employed, demonstrating the utility of substrate engineering in PKS functional studies and biocatalysis.
聚酮合酶(PKSs)的生化特性研究依赖于功能化为亲电酯的合成底物,以酰化酶并启动催化循环。在这些研究中,N - 乙酰半胱胺硫酯通常用于全PKS模块以及切除结构域的体外研究。然而,控制具有多个结构域的全PKS模块催化循环的底物工程方法仍未得到充分探索。本研究考察了一系列经不同方式激活的天然六酮底物对苦霉素(Pik)途径中第六个也是最后一个模块PikAIV催化结果的影响。我们证明了能够以大于10:1的选择性控制产物形成,要么进行全模块催化生成一个14元大环内酯,要么直接环化生成一个12元环。这一结果是通过改变所使用的六酮酯的类型实现的,证明了底物工程在PKS功能研究和生物催化中的实用性。