Suppr超能文献

自闭症谱系障碍诊断的多模态功能网络建模。

Multiple functional networks modeling for autism spectrum disorder diagnosis.

机构信息

Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea.

Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.

出版信息

Hum Brain Mapp. 2017 Nov;38(11):5804-5821. doi: 10.1002/hbm.23769. Epub 2017 Aug 28.

Abstract

Despite countless studies on autism spectrum disorder (ASD), diagnosis relies on specific behavioral criteria and neuroimaging biomarkers for the disorder are still relatively scarce and irrelevant for diagnostic workup. Many researchers have focused on functional networks of brain activities using resting-state functional magnetic resonance imaging (rsfMRI) to diagnose brain diseases, including ASD. Although some existing methods are able to reveal the abnormalities in functional networks, they are either highly dependent on prior assumptions for modeling these networks or do not focus on latent functional connectivities (FCs) by considering discriminative relations among FCs in a nonlinear way. In this article, we propose a novel framework to model multiple networks of rsfMRI with data-driven approaches. Specifically, we construct large-scale functional networks with hierarchical clustering and find discriminative connectivity patterns between ASD and normal controls (NC). We then learn features and classifiers for each cluster through discriminative restricted Boltzmann machines (DRBMs). In the testing phase, each DRBM determines whether a test sample is ASD or NC, based on which we make a final decision with a majority voting strategy. We assess the diagnostic performance of the proposed method using public datasets and describe the effectiveness of our method by comparing it to competing methods. We also rigorously analyze FCs learned by DRBMs on each cluster and discover dominant FCs that play a major role in discriminating between ASD and NC. Hum Brain Mapp 38:5804-5821, 2017. © 2017 Wiley Periodicals, Inc.

摘要

尽管有无数关于自闭症谱系障碍 (ASD) 的研究,但诊断仍然依赖于特定的行为标准,而该障碍的神经影像学生物标志物仍然相对稀缺,与诊断工作无关。许多研究人员已经使用静息态功能磁共振成像 (rsfMRI) 关注大脑活动的功能网络,以诊断包括 ASD 在内的脑部疾病。虽然一些现有的方法能够揭示功能网络的异常,但它们要么高度依赖于对这些网络进行建模的先验假设,要么不通过以非线性方式考虑 FC 之间的判别关系来关注潜在的功能连通性 (FC)。在本文中,我们提出了一种新的框架,通过数据驱动的方法对 rsfMRI 的多个网络进行建模。具体来说,我们使用层次聚类构建大规模功能网络,并发现 ASD 和正常对照组 (NC) 之间的判别连接模式。然后,我们通过判别受限玻尔兹曼机 (DRBM) 为每个聚类学习特征和分类器。在测试阶段,每个 DRBM 根据判别结果确定测试样本是 ASD 还是 NC,然后我们使用多数投票策略做出最终决策。我们使用公共数据集评估所提出方法的诊断性能,并通过与竞争方法进行比较来描述我们方法的有效性。我们还对 DRBM 在每个聚类上学习的 FC 进行了严格的分析,并发现了在 ASD 和 NC 之间具有主要判别作用的主导 FC。人类大脑映射 38:5804-5821,2017。©2017 威利期刊公司

相似文献

引用本文的文献

本文引用的文献

2
The study of brain functional connectivity in Parkinson's disease.帕金森病脑功能连接性研究
Transl Neurodegener. 2016 Oct 28;5:18. doi: 10.1186/s40035-016-0066-0. eCollection 2016.
4
A multi-modal parcellation of human cerebral cortex.人类大脑皮层的多模态分区
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
7
Learning Discriminative Bayesian Networks from High-Dimensional Continuous Neuroimaging Data.从高维连续神经影像数据中学习判别式贝叶斯网络。
IEEE Trans Pattern Anal Mach Intell. 2016 Nov;38(11):2269-2283. doi: 10.1109/TPAMI.2015.2511754. Epub 2015 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验