Kobayashi Takuya, Miyashita Takuya, Murayama Takashi, Toyoshima Yoko Y
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
PLoS One. 2017 Aug 29;12(8):e0183672. doi: 10.1371/journal.pone.0183672. eCollection 2017.
Dynactin is a dynein-regulating protein that increases the processivity of dynein movement on microtubules. Recent studies have shown that a tripartite complex of dynein-dynactin-Bicaudal D2 is essential for highly processive movement. To elucidate the regulation of dynein motility by dynactin, we focused on two isoforms (A and B) of dynactin 1 (DCTN1), the largest subunit of dynactin that contains both microtubule- and dynein-binding domains. The only difference between the primary structures of the two isoforms is that DCTN1B lacks the K-rich domain, a cluster of basic residues. We measured dynein motility by single molecule observation of recombinant dynein and dynactin. Whereas the tripartite complex containing DCTN1A exhibited highly processive movement, the complex containing DCTN1B dissociated from microtubules with no apparent processive movement. This inhibitory effect of DCTN1B was caused by reductions of the microtubule-binding affinities of both dynein and dynactin, which was attributed to the coiled-coil 1 domain of DCTN1. In DCTN1A, the K-rich domain antagonized these inhibitory effects. Therefore, dynactin has two antagonistic domains and promotes or suppresses dynein motility to accomplish correct localization and functions of dynein within a cell.
动力蛋白激活蛋白是一种调节动力蛋白的蛋白质,它能提高动力蛋白在微管上运动的持续性。最近的研究表明,动力蛋白-动力蛋白激活蛋白-Bicaudal D2三联体复合物对于高效的持续性运动至关重要。为了阐明动力蛋白激活蛋白对动力蛋白运动性的调节作用,我们聚焦于动力蛋白激活蛋白1(DCTN1)的两种异构体(A和B),DCTN1是动力蛋白激活蛋白的最大亚基,包含微管结合域和动力蛋白结合域。这两种异构体一级结构的唯一区别在于DCTN1B缺乏富含K的结构域,即一簇碱性残基。我们通过对重组动力蛋白和动力蛋白激活蛋白进行单分子观察来测量动力蛋白的运动性。含有DCTN1A的三联体复合物表现出高度的持续性运动,而含有DCTN1B的复合物则从微管上解离,没有明显的持续性运动。DCTN1B的这种抑制作用是由于动力蛋白和动力蛋白激活蛋白与微管结合亲和力的降低,这归因于DCTN1的卷曲螺旋1结构域。在DCTN1A中,富含K的结构域对抗了这些抑制作用。因此,动力蛋白激活蛋白有两个拮抗结构域,可促进或抑制动力蛋白的运动性,以实现动力蛋白在细胞内的正确定位和功能。