Suppr超能文献

用于杯盘比计算的相似性正则化稀疏组套索法

Similarity regularized sparse group lasso for cup to disc ratio computation.

作者信息

Cheng Jun, Zhang Zhuo, Tao Dacheng, Wong Damon Wing Kee, Liu Jiang, Baskaran Mani, Aung Tin, Wong Tien Yin

机构信息

Institute for Infocomm Research, ASTAR, Singapore.

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.

出版信息

Biomed Opt Express. 2017 Jul 20;8(8):3763-3777. doi: 10.1364/BOE.8.003763. eCollection 2017 Aug 1.

Abstract

Automatic cup to disc ratio (CDR) computation from color fundus images has shown to be promising for glaucoma detection. Over the past decade, many algorithms have been proposed. In this paper, we first review the recent work in the area and then present a novel similarity-regularized sparse group lasso method for automated CDR estimation. The proposed method reconstructs the testing disc image based on a set of reference disc images by integrating the similarity between testing and the reference disc images with the sparse group lasso constraints. The reconstruction coefficients are then used to estimate the CDR of the testing image. The proposed method has been validated using 650 images with manually annotated CDRs. Experimental results show an average CDR error of 0.0616 and a correlation coefficient of 0.7, outperforming other methods. The areas under curve in the diagnostic test reach 0.843 and 0.837 when manual and automatically segmented discs are used respectively, better than other methods as well.

摘要

从彩色眼底图像中自动计算杯盘比(CDR)已被证明在青光眼检测方面具有前景。在过去十年中,已经提出了许多算法。在本文中,我们首先回顾该领域的近期工作,然后提出一种用于自动CDR估计的新颖的相似性正则化稀疏组套索方法。所提出的方法通过将测试盘图像与参考盘图像之间的相似性与稀疏组套索约束相结合,基于一组参考盘图像重建测试盘图像。然后使用重建系数来估计测试图像的CDR。所提出的方法已使用650张具有手动标注CDR的图像进行了验证。实验结果表明,平均CDR误差为0.0616,相关系数为0.7,优于其他方法。当分别使用手动分割和自动分割的视盘时,诊断测试中的曲线下面积分别达到0.843和0.837,也优于其他方法。

相似文献

1
Similarity regularized sparse group lasso for cup to disc ratio computation.
Biomed Opt Express. 2017 Jul 20;8(8):3763-3777. doi: 10.1364/BOE.8.003763. eCollection 2017 Aug 1.
2
Sparse dissimilarity-constrained coding for glaucoma screening.
IEEE Trans Biomed Eng. 2015 May;62(5):1395-403. doi: 10.1109/TBME.2015.2389234. Epub 2015 Jan 9.
3
Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning.
IEEE J Biomed Health Inform. 2020 Apr;24(4):1104-1113. doi: 10.1109/JBHI.2019.2934477. Epub 2019 Aug 12.
4
Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis.
Med Biol Eng Comput. 2019 Sep;57(9):2055-2067. doi: 10.1007/s11517-019-02011-z. Epub 2019 Jul 27.
6
Highly Accurate and Precise Automated Cup-to-Disc Ratio Quantification for Glaucoma Screening.
Ophthalmol Sci. 2024 Apr 27;4(5):100540. doi: 10.1016/j.xops.2024.100540. eCollection 2024 Sep-Oct.
7
Sparse Range-Constrained Learning and Its Application for Medical Image Grading.
IEEE Trans Med Imaging. 2018 Dec;37(12):2729-2738. doi: 10.1109/TMI.2018.2851607. Epub 2018 Jun 29.
8
Joint optic disc and cup boundary extraction from monocular fundus images.
Comput Methods Programs Biomed. 2017 Aug;147:51-61. doi: 10.1016/j.cmpb.2017.06.004. Epub 2017 Jun 23.
10
Automatic Glaucoma Detection from Stereo Fundus Images.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1540-1543. doi: 10.1109/EMBC44109.2020.9175923.

引用本文的文献

1
Machine Learning and Deep Learning Techniques for Optic Disc and Cup Segmentation - A Review.
Clin Ophthalmol. 2022 Mar 11;16:747-764. doi: 10.2147/OPTH.S348479. eCollection 2022.
2
Clinical validation of , an automated optic nerve head analysis software.
Indian J Ophthalmol. 2019 Jul;67(7):1089-1094. doi: 10.4103/ijo.IJO_1509_18.
3
Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile.
PLoS One. 2019 Jan 10;14(1):e0209409. doi: 10.1371/journal.pone.0209409. eCollection 2019.

本文引用的文献

1
Integrating holistic and local deep features for glaucoma classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1328-1331. doi: 10.1109/EMBC.2016.7590952.
2
Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores.
IEEE Trans Med Imaging. 2016 Dec;35(12):2631-2644. doi: 10.1109/TMI.2016.2587062. Epub 2016 Aug 3.
3
Glaucoma detection based on deep convolutional neural network.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:715-8. doi: 10.1109/EMBC.2015.7318462.
4
Sparse dissimilarity-constrained coding for glaucoma screening.
IEEE Trans Biomed Eng. 2015 May;62(5):1395-403. doi: 10.1109/TBME.2015.2389234. Epub 2015 Jan 9.
5
Efficient reconstruction-based optic cup localization for glaucoma screening.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):445-52. doi: 10.1007/978-3-642-40760-4_56.
6
Self-assessment for optic disc segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5861-4. doi: 10.1109/EMBC.2013.6610885.
7
Validating retinal fundus image analysis algorithms: issues and a proposal.
Invest Ophthalmol Vis Sci. 2013 May 1;54(5):3546-59. doi: 10.1167/iovs.12-10347.
8
Superpixel classification based optic disc and optic cup segmentation for glaucoma screening.
IEEE Trans Med Imaging. 2013 Jun;32(6):1019-32. doi: 10.1109/TMI.2013.2247770. Epub 2013 Feb 18.
9
Automatic optic disc segmentation with peripapillary atrophy elimination.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6224-7. doi: 10.1109/IEMBS.2011.6091537.
10
Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment.
IEEE Trans Med Imaging. 2011 Jun;30(6):1192-205. doi: 10.1109/TMI.2011.2106509. Epub 2011 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验