Suppr超能文献

水凝胶基底的应力松弛调节小鼠成肌细胞的铺展和增殖。

Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts.

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA; Department of Bioengineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, Lausanne 1015, Switzerland.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Acta Biomater. 2017 Oct 15;62:82-90. doi: 10.1016/j.actbio.2017.08.041. Epub 2017 Aug 30.

Abstract

UNLABELLED

Mechanical properties of the extracellular microenvironment are known to alter cellular behavior, such as spreading, proliferation or differentiation. Previous studies have primarily focused on studying the effect of matrix stiffness on cells using hydrogel substrates that exhibit purely elastic behavior. However, these studies have neglected a key property exhibited by the extracellular matrix (ECM) and various tissues; viscoelasticity and subsequent stress-relaxation. As muscle exhibits viscoelasticity, stress-relaxation could regulate myoblast behavior such as spreading and proliferation, but this has not been previously studied. In order to test the impact of stress relaxation on myoblasts, we created a set of two-dimensional RGD-modified alginate hydrogel substrates with varying initial elastic moduli and rates of relaxation. The spreading of myoblasts cultured on soft stress-relaxing substrates was found to be greater than cells on purely elastic substrates of the same initial elastic modulus. Additionally, the proliferation of myoblasts was greater on hydrogels that exhibited stress-relaxation, as compared to cells on elastic hydrogels of the same modulus. These findings highlight stress-relaxation as an important mechanical property in the design of a biomaterial system for the culture of myoblasts.

STATEMENT OF SIGNIFICANCE

This article investigates the effect of matrix stress-relaxation on spreading and proliferation of myoblasts by using tunable elastic and stress-relaxing alginate hydrogels substrates with different initial elastic moduli. Many past studies investigating the effect of mechanical properties on cell fate have neglected the viscoelastic behavior of extracellular matrices and various tissues and used hydrogels exhibiting purely elastic behavior. Muscle tissue is viscoelastic and exhibits stress-relaxation. Therefore, stress-relaxation could regulate myoblast behavior if it were to be incorporated into the design of hydrogel substrates. Altogether, we showed that stress-relaxation impacts myoblasts spreading and proliferation. These findings enable a better understanding of myoblast behavior on viscoelastic substrates and could lead to the design of more suitable substrates for myoblast expansion in vitro.

摘要

未加标签

细胞外微环境的机械性能已知会改变细胞行为,如扩散、增殖或分化。以前的研究主要集中在使用表现出纯弹性行为的水凝胶基底来研究基质刚度对细胞的影响。然而,这些研究忽略了细胞外基质(ECM)和各种组织表现出的一个关键特性;粘弹性和随后的应力松弛。由于肌肉表现出粘弹性,应力松弛可以调节成肌细胞的行为,如扩散和增殖,但这尚未被研究过。为了测试应力松弛对成肌细胞的影响,我们创建了一组具有不同初始弹性模量和松弛速率的二维 RGD 修饰的藻酸盐水凝胶基底。研究发现,培养在柔软的应力松弛基底上的成肌细胞的扩散程度大于具有相同初始弹性模量的纯弹性基底上的细胞。此外,与具有相同模量的弹性水凝胶上的细胞相比,在表现出应力松弛的水凝胶上培养的成肌细胞增殖更大。这些发现强调了应力松弛作为设计用于培养成肌细胞的生物材料系统的重要力学特性。

意义声明

本文通过使用具有不同初始弹性模量的可调弹性和应力松弛藻酸盐水凝胶基底,研究了基质应力松弛对成肌细胞扩散和增殖的影响。许多过去研究机械性能对细胞命运影响的研究忽略了细胞外基质和各种组织的粘弹性行为,并使用表现出纯弹性行为的水凝胶。肌肉组织是粘弹性的,表现出应力松弛。因此,如果将其纳入水凝胶基底的设计中,应力松弛可以调节成肌细胞的行为。总之,我们表明应力松弛会影响成肌细胞的扩散和增殖。这些发现使我们更好地理解成肌细胞在粘弹性基底上的行为,并可能导致设计更适合体外成肌细胞扩增的基底。

相似文献

1
Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts.
Acta Biomater. 2017 Oct 15;62:82-90. doi: 10.1016/j.actbio.2017.08.041. Epub 2017 Aug 30.
2
Substrate stress relaxation regulates cell spreading.
Nat Commun. 2015 Feb 19;6:6364. doi: 10.1038/ncomms7365.
3
Hydrogels with tunable stress relaxation regulate stem cell fate and activity.
Nat Mater. 2016 Mar;15(3):326-34. doi: 10.1038/nmat4489. Epub 2015 Nov 30.
4
Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue.
Biomacromolecules. 2015 May 11;16(5):1497-505. doi: 10.1021/bm501845j. Epub 2015 Apr 10.
5
Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies.
Biomaterials. 2019 Apr;200:15-24. doi: 10.1016/j.biomaterials.2019.02.004. Epub 2019 Feb 5.
6
Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration.
Acta Biomater. 2024 May;180:244-261. doi: 10.1016/j.actbio.2024.04.017. Epub 2024 Apr 12.
7
Photofunctionalization of alginate hydrogels to promote adhesion and proliferation of human mesenchymal stem cells.
Tissue Eng Part A. 2013 Jun;19(11-12):1424-32. doi: 10.1089/ten.TEA.2012.0581. Epub 2013 Feb 26.
9
Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
Acta Biomater. 2024 Mar 15;177:203-215. doi: 10.1016/j.actbio.2024.02.010. Epub 2024 Feb 12.
10
Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function.
J Biomed Mater Res A. 2023 Jul;111(7):896-909. doi: 10.1002/jbm.a.37520. Epub 2023 Mar 2.

引用本文的文献

1
The role of non-linear viscoelastic hydrogel mechanics in cell culture and transduction.
Mater Today Bio. 2025 Aug 9;34:102188. doi: 10.1016/j.mtbio.2025.102188. eCollection 2025 Oct.
2
Extracellular Matrix Viscoelasticity: A Dynamic Regulator of Cellular Behavior.
Ann Biomed Eng. 2025 Jun 17. doi: 10.1007/s10439-025-03767-2.
3
Viscoelasticity of ECM and cells-origin, measurement and correlation.
Mechanobiol Med. 2024 Jul 31;2(4):100082. doi: 10.1016/j.mbm.2024.100082. eCollection 2024 Dec.
5
Matrix degradation enhances stress relaxation, regulating cell adhesion and spreading.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2416771122. doi: 10.1073/pnas.2416771122. Epub 2025 Mar 25.
6
Extracellular fluid viscosity regulates human mesenchymal stem cell lineage and function.
Sci Adv. 2025 Jan 3;11(1):eadr5023. doi: 10.1126/sciadv.adr5023. Epub 2025 Jan 1.
7
Stress relaxation rates of myocardium from failing and non-failing hearts.
Biomech Model Mechanobiol. 2025 Feb;24(1):265-280. doi: 10.1007/s10237-024-01909-4. Epub 2024 Dec 31.
8
Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells.
Acta Biomater. 2025 Jan 15;192:48-60. doi: 10.1016/j.actbio.2024.11.044. Epub 2024 Nov 28.
9
Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing.
Sci Adv. 2024 Nov 15;10(46):eadf9758. doi: 10.1126/sciadv.adf9758.
10
ECM-mimicking composite hydrogel for accelerated vascularized bone regeneration.
Bioact Mater. 2024 Sep 4;42:241-256. doi: 10.1016/j.bioactmat.2024.08.035. eCollection 2024 Dec.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
3
YAP-Mediated Mechanotransduction in Skeletal Muscle.
Front Physiol. 2016 Feb 16;7:41. doi: 10.3389/fphys.2016.00041. eCollection 2016.
4
Hydrogels with tunable stress relaxation regulate stem cell fate and activity.
Nat Mater. 2016 Mar;15(3):326-34. doi: 10.1038/nmat4489. Epub 2015 Nov 30.
5
Substrate stress relaxation regulates cell spreading.
Nat Commun. 2015 Feb 19;6:6364. doi: 10.1038/ncomms7365.
6
Interplay of matrix stiffness and protein tethering in stem cell differentiation.
Nat Mater. 2014 Oct;13(10):979-87. doi: 10.1038/nmat4051. Epub 2014 Aug 10.
7
Materials as stem cell regulators.
Nat Mater. 2014 Jun;13(6):547-57. doi: 10.1038/nmat3937.
8
Introduction to cell-hydrogel mechanosensing.
Interface Focus. 2014 Apr 6;4(2):20130038. doi: 10.1098/rsfs.2013.0038.
9
Mechanical memory and dosing influence stem cell fate.
Nat Mater. 2014 Jun;13(6):645-52. doi: 10.1038/nmat3889. Epub 2014 Mar 16.
10
The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells.
Biomaterials. 2014 Feb;35(6):1857-68. doi: 10.1016/j.biomaterials.2013.11.023. Epub 2013 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验