Institute for Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany.
Biomechanics and Biorobotics, Stuttgart Research Centre for Simulation Sciences (SRC SimTech), University of Stuttgart, Allmandring 28, 70569, Stuttgart, Germany.
Biomed Eng Online. 2017 Sep 2;16(1):109. doi: 10.1186/s12938-017-0399-7.
In the state of the art finite element AHBMs for car crash analysis in the LS-DYNA software material named *MAT_MUSCLE (*MAT_156) is used for active muscles modeling. It has three elements in parallel configuration, which has several major drawbacks: restraint approximation of the physical reality, complicated parameterization and absence of the integrated activation dynamics. This study presents implementation of the extended four element Hill-type muscle model with serial damping and eccentric force-velocity relation including [Formula: see text] dependent activation dynamics and internal method for physiological muscle routing.
Proposed model was implemented into the general-purpose finite element (FE) simulation software LSDYNA as a user material for truss elements. This material model is verified and validated with three different sets of mammalian experimental data, taken from the literature. It is compared to the *MAT_MUSCLE (*MAT_156) Hill-type muscle model already existing in LS-DYNA, which is currently used in finite element human body models (HBMs). An application example with an arm model extracted from the FE ViVA OpenHBM is given, taking into account physiological muscle paths.
The simulation results show better material model accuracy, calculation robustness and improved muscle routing capability compared to *MAT_156. The FORTRAN source code for the user material subroutine dyn21.f and the muscle parameters for all simulations, conducted in the study, are given at https://zenodo.org/record/826209 under an open source license. This enables a quick application of the proposed material model in LS-DYNA, especially in active human body models (AHBMs) for applications in automotive safety.
在 LS-DYNA 软件中用于汽车碰撞分析的先进有限元 AHBM 中,使用名为 *MAT_MUSCLE(*MAT_156)的材料来对主动肌肉进行建模。它由三个并联配置的单元组成,具有几个主要缺点:对物理现实的约束近似、复杂的参数化以及缺乏集成的激活动力学。本研究提出了一种扩展的四元 Hill 型肌肉模型的实现,该模型具有串联阻尼和偏心力-速度关系,包括 [Formula: see text] 相关的激活动力学和内部生理肌肉路径方法。
所提出的模型被实现到通用有限元(FE)仿真软件 LSDYNA 中,作为桁架元素的用户材料。该材料模型通过来自文献的三组不同的哺乳动物实验数据进行了验证和验证。它与已经存在于 LS-DYNA 中的 *MAT_MUSCLE(*MAT_156)Hill 型肌肉模型进行了比较,后者目前用于有限元人体模型(HBM)中。给出了一个从 FE ViVA OpenHBM 中提取的手臂模型的应用示例,考虑了生理肌肉路径。
与 *MAT_156 相比,模拟结果显示出更好的材料模型精度、计算鲁棒性和改进的肌肉路径能力。研究中进行的所有模拟的用户材料子程序 dyn21.f 的 FORTRAN 源代码和肌肉参数都在 https://zenodo.org/record/826209 上以开源许可证提供。这使得可以在 LS-DYNA 中快速应用所提出的材料模型,特别是在用于汽车安全应用的主动人体模型(AHBM)中。