State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China.
Chem Soc Rev. 2017 Nov 13;46(22):6764-6815. doi: 10.1039/c7cs00278e.
Biological materials have robust hierarchical structures capable of specialized functions and the incorporation of natural biologically active components, which have been finely tuned through millions of years of evolution. These highly efficient architectural designs afford remarkable transport and mechanical properties, which render them attractive candidates for flexible electronic sensing technologies. This review provides a comprehensive overview of the fundamental aspects and applications of biological materials for flexible electronic devices and discusses various classes of biological materials by describing their unique structures and functions. We discuss the effect of the biological activity of biological materials on the improved properties in detail, because this effect overcomes the limited bioavailability and restricted morphology of materials generally encountered in traditional flexible electronic devices. We also summarize various approaches for the design and functionalization of natural materials and their applications in flexible electronic devices for use in biomedical, electron, energy, environmental and optical fields. Finally, we provide new insights and perspectives to further describe trends for future generations of biological materials, which are likely to be critical components (building blocks or elements) in future flexible electronics.
生物材料具有稳健的层次结构,能够实现专门的功能并融入天然的生物活性成分,这些成分经过数百万年的进化已经得到了精细的调整。这些高效的建筑设计提供了显著的传输和机械性能,使它们成为有吸引力的候选者,适用于灵活的电子传感技术。
本篇综述全面概述了生物材料在柔性电子器件中的基本方面和应用,并通过描述其独特的结构和功能讨论了各种类别的生物材料。我们详细讨论了生物材料的生物活性对改善性能的影响,因为这种影响克服了传统柔性电子器件中通常遇到的材料的有限生物利用度和受限形态。我们还总结了各种用于设计和功能化天然材料的方法及其在生物医学、电子、能源、环境和光学领域的柔性电子器件中的应用。
最后,我们提供了新的见解和观点,以进一步描述未来生物材料的发展趋势,这些生物材料很可能成为未来柔性电子产品的关键组件(构建块或元素)。