Suppr超能文献

硫氧化鳃内共生体的基因组序列

Genome sequence of the sulfur-oxidizing gill endosymbiont.

作者信息

Ponnudurai Ruby, Sayavedra Lizbeth, Kleiner Manuel, Heiden Stefan E, Thürmer Andrea, Felbeck Horst, Schlüter Rabea, Sievert Stefan M, Daniel Rolf, Schweder Thomas, Markert Stephanie

机构信息

Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany.

Max Planck Institute for Marine Microbiology, Department of Symbiosis, Bremen, Germany.

出版信息

Stand Genomic Sci. 2017 Sep 2;12:50. doi: 10.1186/s40793-017-0266-y. eCollection 2017.

Abstract

, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics. In this study, we report the first draft genome sequence of the sulfur-oxidizing symbiont of , here tentatively named Thioglobus thermophilus. The draft genome (3.1 Mb) harbors 3045 protein-coding genes. It revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO fixation. Enzymes required for the synthesis of the tricarboxylic acid cycle intermediates oxaloacetate and succinate were absent, suggesting that these intermediates may be substituted by metabolites from external sources. We also detected a repertoire of genes associated with cell surface adhesion, bacteriotoxicity and phage immunity, which may perform symbiosis-specific roles in the symbiosis.

摘要

一种生活在东太平洋海隆深海热液喷口的贻贝,在其鳃内与化学合成菌共生。细胞内共生菌群体利用喷口释放的还原态硫化合物作为能量来源,为双壳类宿主合成营养物质。由于共生菌无法培养,只能通过基因组学和蛋白质组学等非培养方法,才能全面、详细地了解其代谢及其与宿主的相互作用。在本研究中,我们报告了这种贻贝的硫氧化共生菌的首个基因组草图序列,暂命名为嗜热硫球藻(Thioglobus thermophilus)。该基因组草图(3.1 Mb)包含3045个蛋白质编码基因。它揭示了利用硫化物和硫代硫酸盐作为能量来源的途径,并编码了用于固定二氧化碳的卡尔文-本森-巴斯姆循环。三羧酸循环中间体草酰乙酸和琥珀酸合成所需的酶缺失,这表明这些中间体可能由外源代谢物替代。我们还检测到了一系列与细胞表面黏附、细菌毒性和噬菌体免疫相关的基因,这些基因可能在这种贻贝共生中发挥共生特异性作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f16e/5581435/0763b4f95fdf/40793_2017_266_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验