Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.
Department of Orthodontics, Nihon University, School of Dentistry, Tokyo, Japan.
J Bone Miner Res. 2018 Jan;33(1):167-181. doi: 10.1002/jbmr.3295. Epub 2017 Nov 2.
Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2 ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2 mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2 mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2 mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2 mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2 mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2 mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2 macrophages. In summary, the paradigm that osteoclasts are the exclusive cells executing inflammatory bone destruction may need to be reevaluated based on our findings with c-Fos-deficient cherubism mice lacking osteoclasts. © 2017 American Society for Bone and Mineral Research.
目前,人们认为抗酒石酸酸性磷酸酶阳性的破骨细胞(TRAP+)是唯一负责炎症性关节炎中局部骨破坏的骨吸收细胞。最近,SH3 域结合蛋白 2(SH3BP2)杂合功能获得突变的 cherubism(Sh3bp2)小鼠模型表现出自身炎症性关节破坏。在这里,我们证明 Sh3bp2 小鼠即使在 12 周龄时缺乏破骨细胞,仍然在远端胫骨处表现出明显的骨侵蚀。血清 I 型胶原 C 端肽(ICTP)水平升高,这是基质金属蛋白酶(MMPs)产生的骨吸收标志物,而另一类由组织蛋白酶 K 产生的吸收标志物交联 C 端肽(CTX)水平没有升高。胶原酶 MMP 水平在缺乏 c-Fos 的 Sh3bp2 小鼠的炎症关节中升高。吸收凹坑含有大量 F4/80+巨噬细胞,巨噬细胞的遗传耗竭挽救了这些侵蚀变化。重要的是,MMP14 抑制剂 NSC405020(靶向血红素结合蛋白(PEX)结构域)的给药抑制了 c-Fos 缺乏的 Sh3bp2 小鼠的骨侵蚀。在 NF-κB 途径激活后,与野生型巨噬细胞相比,来自 c-Fos 缺乏的 Sh3bp2 小鼠的巨噬细胞表达了更多的 MMP14。有趣的是,受体激活核因子κB 配体(RANKL)缺乏的 Sh3bp2 小鼠未出现明显的骨侵蚀,而 c-Fos 缺失恢复了 RANKL 缺乏的 Sh3bp2 小鼠的骨侵蚀,表明在该模型中,巨噬细胞的溶骨性转化需要 c-Fos 的功能丧失和 SH3BP2 的功能获得。这些数据提供了第一个遗传证据,表明除破骨细胞以外的细胞可导致炎症性骨疾病中的局灶性骨破坏,并表明 MMP14 是赋予 c-Fos 缺乏的 Sh3bp2 巨噬细胞病理性骨吸收能力的关键介质。总之,根据我们对缺乏破骨细胞的 c-Fos 缺乏 cherubism 小鼠的研究结果,认为破骨细胞是执行炎症性骨破坏的唯一细胞的范式可能需要重新评估。