Suppr超能文献

迷迭香酸和鼠尾草酸,迷迭香的两种主要抗氧化剂,通过不同的机制起作用。

Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms.

机构信息

Commissariat à l'Energie Atomique et aux Energies Alternatives Cadarache, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France.

Naturex, BP 81218, F-84911 Avignon cedex 9, France.

出版信息

Plant Physiol. 2017 Nov;175(3):1381-1394. doi: 10.1104/pp.17.01183. Epub 2017 Sep 15.

Abstract

Carnosic acid, a phenolic diterpene specific to the Lamiaceae family, is highly abundant in rosemary (). Despite numerous industrial and medicinal/pharmaceutical applications of its antioxidative features, this compound in planta and its antioxidant mechanism have received little attention, except a few studies of rosemary plants under natural conditions. In vitro analyses, using high-performance liquid chromatography-ultraviolet and luminescence imaging, revealed that carnosic acid and its major oxidized derivative, carnosol, protect lipids from oxidation. Both compounds preserved linolenic acid and monogalactosyldiacylglycerol from singlet oxygen and from hydroxyl radical. When applied exogenously, they were both able to protect thylakoid membranes prepared from Arabidopsis () leaves against lipid peroxidation. Different levels of carnosic acid and carnosol in two contrasting rosemary varieties correlated with tolerance to lipid peroxidation. Upon reactive oxygen species (ROS) oxidation of lipids, carnosic acid was consumed and oxidized into various derivatives, including into carnosol, while carnosol resisted, suggesting that carnosic acid is a chemical quencher of ROS. The antioxidative function of carnosol relies on another mechanism, occurring directly in the lipid oxidation process. Under oxidative conditions that did not involve ROS generation, carnosol inhibited lipid peroxidation, contrary to carnosic acid. Using spin probes and electron paramagnetic resonance detection, we confirmed that carnosic acid, rather than carnosol, is a ROS quencher. Various oxidized derivatives of carnosic acid were detected in rosemary leaves in low light, indicating chronic oxidation of this compound, and accumulated in plants exposed to stress conditions, in parallel with a loss of carnosic acid, confirming that chemical quenching of ROS by carnosic acid takes place in planta.

摘要

迷迭香酸是唇形科特有的酚二萜,含量丰富。尽管其抗氧化特性在工业和医药/制药领域有诸多应用,但这种植物内的化合物及其抗氧化机制却鲜有关注,只有少数关于自然条件下迷迭香植物的研究除外。利用高效液相色谱-紫外和发光成像的体外分析表明,迷迭香酸及其主要氧化衍生物迷迭香醇可保护脂质免受氧化。这两种化合物可防止亚麻酸和单半乳糖二酰基甘油受到单线态氧和羟基自由基的攻击。当外源性施用时,它们都能够保护从拟南芥叶片中制备的类囊体膜免受脂质过氧化。两种不同迷迭香品种中迷迭香酸和迷迭香醇的不同水平与对脂质过氧化的耐受性相关。当脂质发生活性氧(ROS)氧化时,迷迭香酸被消耗并氧化成各种衍生物,包括迷迭香醇,而迷迭香醇则抵抗氧化,表明迷迭香酸是 ROS 的化学淬灭剂。迷迭香醇的抗氧化功能依赖于另一种机制,即在脂质氧化过程中直接发生。在不涉及 ROS 生成的氧化条件下,迷迭香醇抑制脂质过氧化,与迷迭香酸相反。使用自旋探针和电子顺磁共振检测,我们证实迷迭香酸而不是迷迭香醇是 ROS 的淬灭剂。在低光照下的迷迭香叶中检测到迷迭香酸的各种氧化衍生物,表明该化合物发生慢性氧化,并在暴露于胁迫条件下的植物中积累,同时迷迭香酸的损失,证实迷迭香酸在植物体内通过化学淬灭 ROS。

相似文献

1
Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms.
Plant Physiol. 2017 Nov;175(3):1381-1394. doi: 10.1104/pp.17.01183. Epub 2017 Sep 15.
3
The key phytochemistry of rosemary (Salvia rosmarinus) contributing to hair protection against UV.
Int J Cosmet Sci. 2023 Dec;45(6):749-760. doi: 10.1111/ics.12883. Epub 2023 Aug 17.
4
Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary.
Eur J Nutr. 2013 Feb;52(1):85-95. doi: 10.1007/s00394-011-0289-x. Epub 2011 Dec 16.
7
8
Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats.
Exp Gerontol. 2009 Jun-Jul;44(6-7):383-9. doi: 10.1016/j.exger.2009.02.015. Epub 2009 Mar 14.
10
Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid.
Xenobiotica. 1992 Feb;22(2):257-68. doi: 10.3109/00498259209046624.

引用本文的文献

1
Benth (Russian Sage), a Source of Diterpenes Exerting Antioxidant Activity in Caco-2 Cells.
Plants (Basel). 2025 Sep 6;14(17):2795. doi: 10.3390/plants14172795.
2
Quorum quenching: A key biological activity of marine actinobacteria extracts for acne vulgaris control.
Biotechnol Rep (Amst). 2025 Jun 24;47:e00903. doi: 10.1016/j.btre.2025.e00903. eCollection 2025 Sep.
3
Application of sage and ginger extracts in dry fermented salami.
Food Chem X. 2025 Jul 17;29:102809. doi: 10.1016/j.fochx.2025.102809. eCollection 2025 Jul.
4
Biosynthesis-based metabolomics analysis reveals chemical diversity between two species.
Front Plant Sci. 2025 Jul 4;16:1613313. doi: 10.3389/fpls.2025.1613313. eCollection 2025.

本文引用的文献

1
Membranes as Structural Antioxidants: RECYCLING OF MALONDIALDEHYDE TO ITS SOURCE IN OXIDATION-SENSITIVE CHLOROPLAST FATTY ACIDS.
J Biol Chem. 2016 Jun 17;291(25):13005-13. doi: 10.1074/jbc.M116.729921. Epub 2016 May 3.
2
Carnosic acid biosynthesis elucidated by a synthetic biology platform.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3681-6. doi: 10.1073/pnas.1523787113. Epub 2016 Mar 14.
3
Function of isoprenoid quinones and chromanols during oxidative stress in plants.
N Biotechnol. 2016 Sep 25;33(5 Pt B):636-643. doi: 10.1016/j.nbt.2016.02.010. Epub 2016 Mar 9.
7
Carnosic acid.
Phytochemistry. 2015 Jul;115:9-19. doi: 10.1016/j.phytochem.2014.12.026. Epub 2015 Jan 29.
8
Plastochromanol-8: fifty years of research.
Phytochemistry. 2014 Dec;108:9-16. doi: 10.1016/j.phytochem.2014.09.011. Epub 2014 Oct 9.
9
Oxidative stability of fish oil supplemented with carnosic acid compared with synthetic antioxidants during long-term storage.
Food Chem. 2011 Sep 1;128(1):93-9. doi: 10.1016/j.foodchem.2011.02.082. Epub 2011 Mar 2.
10
Role of plastoglobules in metabolite repair in the tocopherol redox cycle.
Front Plant Sci. 2014 Jun 26;5:298. doi: 10.3389/fpls.2014.00298. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验