Suppr超能文献

急性缺血性卒中组织命运特征的深度学习

Deep Learning of Tissue Fate Features in Acute Ischemic Stroke.

作者信息

Stier Noah, Vincent Nicholas, Liebeskind David, Scalzo Fabien

机构信息

Neurovascular Imaging Research Core, Department of Neurology, Univerisity of California, Los Angeles (UCLA).

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1316-1321. doi: 10.1109/BIBM.2015.7359869. Epub 2015 Dec 17.

Abstract

In acute ischemic stroke treatment, prediction of tissue survival outcome plays a fundamental role in the clinical decision-making process, as it can be used to assess the balance of risk vs. possible benefit when considering endovascular clot-retrieval intervention. For the first time, we construct a deep learning model of tissue fate based on randomly sampled local patches from the hypoperfusion (Tmax) feature observed in MRI immediately after symptom onset. We evaluate the model with respect to the ground truth established by an expert neurologist four days after intervention. Experiments on 19 acute stroke patients evaluated the accuracy of the model in predicting tissue fate. Results show the superiority of the proposed regional learning framework versus a single-voxel-based regression model.

摘要

在急性缺血性中风治疗中,组织存活结果的预测在临床决策过程中起着基础性作用,因为在考虑血管内血栓清除干预时,它可用于评估风险与潜在益处之间的平衡。我们首次基于症状发作后立即在MRI中观察到的低灌注(Tmax)特征的随机采样局部斑块构建了组织命运的深度学习模型。我们根据干预后四天由专家神经科医生确定的地面真值对模型进行评估。对19名急性中风患者的实验评估了该模型预测组织命运的准确性。结果表明,所提出的区域学习框架优于基于单像素的回归模型。

相似文献

1
Deep Learning of Tissue Fate Features in Acute Ischemic Stroke.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1316-1321. doi: 10.1109/BIBM.2015.7359869. Epub 2015 Dec 17.
2
Regional prediction of tissue fate in acute ischemic stroke.
Ann Biomed Eng. 2012 Oct;40(10):2177-87. doi: 10.1007/s10439-012-0591-7. Epub 2012 May 17.
3
OEDL: an optimized ensemble deep learning method for the prediction of acute ischemic stroke prognoses using union features.
Front Neurol. 2023 Jun 21;14:1158555. doi: 10.3389/fneur.2023.1158555. eCollection 2023.
4
Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging.
JAMA Netw Open. 2020 Mar 2;3(3):e200772. doi: 10.1001/jamanetworkopen.2020.0772.
6
Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke.
Stroke. 2020 Feb;51(2):489-497. doi: 10.1161/STROKEAHA.119.027457. Epub 2019 Dec 30.
8
Association of Multiple Passes during Mechanical Thrombectomy with Incomplete Reperfusion and Lesion Growth.
Cerebrovasc Dis. 2022;51(3):394-402. doi: 10.1159/000519796. Epub 2021 Dec 13.
9
Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning.
Stroke. 2018 Jun;49(6):1394-1401. doi: 10.1161/STROKEAHA.117.019740. Epub 2018 May 2.
10
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
Stroke. 2003 Aug;34(8):e109-37. doi: 10.1161/01.STR.0000082721.62796.09. Epub 2003 Jul 17.

引用本文的文献

1
Automatic prediction of stroke treatment outcomes: latest advances and perspectives.
Biomed Eng Lett. 2025 Feb 17;15(3):467-488. doi: 10.1007/s13534-025-00462-y. eCollection 2025 May.
2
Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach.
Sci Rep. 2022 Oct 27;12(1):18054. doi: 10.1038/s41598-022-22939-x.
3
A Review on Computer Aided Diagnosis of Acute Brain Stroke.
Sensors (Basel). 2021 Dec 20;21(24):8507. doi: 10.3390/s21248507.
4
Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models.
J Cereb Blood Flow Metab. 2021 Nov;41(11):3085-3096. doi: 10.1177/0271678X211024371. Epub 2021 Jun 23.
5
Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA.
J Cereb Blood Flow Metab. 2021 Nov;41(11):3028-3038. doi: 10.1177/0271678X211023660. Epub 2021 Jun 8.
6
Artificial Intelligence and Acute Stroke Imaging.
AJNR Am J Neuroradiol. 2021 Jan;42(1):2-11. doi: 10.3174/ajnr.A6883. Epub 2020 Nov 26.
7
The outcome in patients with brain stroke: A deep learning neural network modeling.
J Res Med Sci. 2020 Aug 24;25:78. doi: 10.4103/jrms.JRMS_268_20. eCollection 2020.
8
Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models.
Front Neurol. 2020 Aug 25;11:889. doi: 10.3389/fneur.2020.00889. eCollection 2020.
10
Primary Categorizing and Masking Cerebral Small Vessel Disease Based on "Deep Learning System".
Front Neuroinform. 2020 May 25;14:17. doi: 10.3389/fninf.2020.00017. eCollection 2020.

本文引用的文献

1
A randomized trial of intraarterial treatment for acute ischemic stroke.
N Engl J Med. 2015 Jan 1;372(1):11-20. doi: 10.1056/NEJMoa1411587. Epub 2014 Dec 17.
2
Deep learning for neuroimaging: a validation study.
Front Neurosci. 2014 Aug 20;8:229. doi: 10.3389/fnins.2014.00229. eCollection 2014.
4
Regional prediction of tissue fate in acute ischemic stroke.
Ann Biomed Eng. 2012 Oct;40(10):2177-87. doi: 10.1007/s10439-012-0591-7. Epub 2012 May 17.
5
3D convolutional neural networks for human action recognition.
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):221-31. doi: 10.1109/TPAMI.2012.59.
7
Artificial neural network prediction of ischemic tissue fate in acute stroke imaging.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1661-70. doi: 10.1038/jcbfm.2010.56. Epub 2010 Apr 28.
8
The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI.
Stroke. 2010 Jun;41(6):1169-74. doi: 10.1161/STROKEAHA.110.580670. Epub 2010 Apr 22.
9
Quantitative prediction of ischemic stroke tissue fate.
NMR Biomed. 2008 Oct;21(8):839-48. doi: 10.1002/nbm.1264.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验