Suppr超能文献

急性缺血性卒中组织命运特征的深度学习

Deep Learning of Tissue Fate Features in Acute Ischemic Stroke.

作者信息

Stier Noah, Vincent Nicholas, Liebeskind David, Scalzo Fabien

机构信息

Neurovascular Imaging Research Core, Department of Neurology, Univerisity of California, Los Angeles (UCLA).

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1316-1321. doi: 10.1109/BIBM.2015.7359869. Epub 2015 Dec 17.

Abstract

In acute ischemic stroke treatment, prediction of tissue survival outcome plays a fundamental role in the clinical decision-making process, as it can be used to assess the balance of risk vs. possible benefit when considering endovascular clot-retrieval intervention. For the first time, we construct a deep learning model of tissue fate based on randomly sampled local patches from the hypoperfusion (Tmax) feature observed in MRI immediately after symptom onset. We evaluate the model with respect to the ground truth established by an expert neurologist four days after intervention. Experiments on 19 acute stroke patients evaluated the accuracy of the model in predicting tissue fate. Results show the superiority of the proposed regional learning framework versus a single-voxel-based regression model.

摘要

在急性缺血性中风治疗中,组织存活结果的预测在临床决策过程中起着基础性作用,因为在考虑血管内血栓清除干预时,它可用于评估风险与潜在益处之间的平衡。我们首次基于症状发作后立即在MRI中观察到的低灌注(Tmax)特征的随机采样局部斑块构建了组织命运的深度学习模型。我们根据干预后四天由专家神经科医生确定的地面真值对模型进行评估。对19名急性中风患者的实验评估了该模型预测组织命运的准确性。结果表明,所提出的区域学习框架优于基于单像素的回归模型。

相似文献

1
Deep Learning of Tissue Fate Features in Acute Ischemic Stroke.急性缺血性卒中组织命运特征的深度学习
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1316-1321. doi: 10.1109/BIBM.2015.7359869. Epub 2015 Dec 17.
2
Regional prediction of tissue fate in acute ischemic stroke.急性缺血性脑卒中组织命运的区域性预测。
Ann Biomed Eng. 2012 Oct;40(10):2177-87. doi: 10.1007/s10439-012-0591-7. Epub 2012 May 17.

引用本文的文献

1
Automatic prediction of stroke treatment outcomes: latest advances and perspectives.中风治疗结果的自动预测:最新进展与展望。
Biomed Eng Lett. 2025 Feb 17;15(3):467-488. doi: 10.1007/s13534-025-00462-y. eCollection 2025 May.
3
A Review on Computer Aided Diagnosis of Acute Brain Stroke.急性脑卒中专研综述
Sensors (Basel). 2021 Dec 20;21(24):8507. doi: 10.3390/s21248507.
6
Artificial Intelligence and Acute Stroke Imaging.人工智能与急性脑卒中影像。
AJNR Am J Neuroradiol. 2021 Jan;42(1):2-11. doi: 10.3174/ajnr.A6883. Epub 2020 Nov 26.

本文引用的文献

2
Deep learning for neuroimaging: a validation study.深度学习在神经影像学中的应用:一项验证性研究。
Front Neurosci. 2014 Aug 20;8:229. doi: 10.3389/fnins.2014.00229. eCollection 2014.
4
Regional prediction of tissue fate in acute ischemic stroke.急性缺血性脑卒中组织命运的区域性预测。
Ann Biomed Eng. 2012 Oct;40(10):2177-87. doi: 10.1007/s10439-012-0591-7. Epub 2012 May 17.
5
3D convolutional neural networks for human action recognition.三维卷积神经网络的人体动作识别。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):221-31. doi: 10.1109/TPAMI.2012.59.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验