Ryczko Dimitri, Grätsch Swantje, Schläger Laura, Keuyalian Avo, Boukhatem Zakaria, Garcia Claudia, Auclair François, Büschges Ansgar, Dubuc Réjean
Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
J Neurosci. 2017 Oct 4;37(40):9759-9770. doi: 10.1523/JNEUROSCI.1810-17.2017. Epub 2017 Sep 18.
The mesencephalic locomotor region (MLR) plays a crucial role in locomotor control. In vertebrates, stimulation of the MLR at increasing intensities elicits locomotion of growing speed. This effect has been presumed to result from higher brain inputs activating the MLR like a dimmer switch. Here, we show in lampreys () of either sex that incremental stimulation of a region homologous to the mammalian substantia nigra pars compacta (SNc) evokes increasing activation of MLR cells with a graded increase in the frequency of locomotor movements. Neurons co-storing glutamate and dopamine were found to project from the primal SNc to the MLR. Blockade of glutamatergic transmission largely diminished MLR cell responses and locomotion. Local blockade of D receptors in the MLR decreased locomotor frequency, but did not disrupt the SNc-evoked graded control of locomotion. Our findings revealed the presence of a glutamatergic input to the MLR originating from the primal SNc that evokes graded locomotor movements. The mesencephalic locomotor region (MLR) plays a crucial role in the control of locomotion. It projects downward to reticulospinal neurons that in turn activate the spinal locomotor networks. Increasing the intensity of MLR stimulation produces a growing activation of reticulospinal cells and a progressive increase in the speed of locomotor movements. Since the discovery of the MLR some 50 years ago, it has been presumed that higher brain regions activate the MLR in a graded fashion, but this has not been confirmed yet. Here, using a combination of techniques from cell to behavior, we provide evidence of a new glutamatergic pathway activating the MLR in a graded fashion, and consequently evoking a progressive increase in locomotor output.
中脑运动区(MLR)在运动控制中起着至关重要的作用。在脊椎动物中,以递增强度刺激MLR会引发速度不断增加的运动。这种效应被认为是由于更高层级的脑输入像调光开关一样激活了MLR。在此,我们在两性七鳃鳗中发现,对与哺乳动物黑质致密部(SNc)同源的区域进行递增刺激,会随着运动频率的分级增加而引起MLR细胞的激活增加。发现共同储存谷氨酸和多巴胺的神经元从原始SNc投射到MLR。阻断谷氨酸能传递在很大程度上减弱了MLR细胞反应和运动。在MLR中局部阻断D受体可降低运动频率,但不会破坏SNc诱发的运动分级控制。我们的研究结果揭示了存在一条源自原始SNc的谷氨酸能输入到MLR,它能引发分级的运动。中脑运动区(MLR)在运动控制中起着至关重要的作用。它向下投射到网状脊髓神经元,进而激活脊髓运动网络。增加MLR刺激的强度会使网状脊髓细胞的激活增加,并使运动速度逐渐提高。自大约50年前发现MLR以来,人们一直认为更高层级的脑区以分级方式激活MLR,但这尚未得到证实。在此,我们结合从细胞到行为的多种技术,提供了一条新的谷氨酸能通路以分级方式激活MLR的证据,从而导致运动输出逐渐增加。