Department of Mechanical Engineering, University of California, Santa Barbara, California, USA.
California NanoSystems Institute, University of California, Santa Barbara, California, USA.
Sci Rep. 2017 Sep 20;7(1):12022. doi: 10.1038/s41598-017-12363-x.
Multicellular spheroids serve as an excellent platform to study tissue behavior and tumor growth in a controlled, three-dimensional (3D) environment. While molecular and cellular studies have long used this platform to study cell behavior in 3D, only recently have studies using multicellular spheroids shown an important role for the mechanics of the microenvironment in a wide range of cellular processes, including during tumor progression. Despite the well-established relevance of mechanical cues to cell behavior and the numerous studies on mechanics using 2D cell culture systems, the spatial and temporal variations in endogenous cellular forces within growing multicellular aggregates remain unknown. Using cell-sized oil droplets with controlled physicochemical properties as force transducers in mesenchymal cell aggregates, we show that the magnitude of cell-generated stresses varies only weakly with spatial location within the spherical aggregate, but it increases considerably over time during aggregate compaction and growth. Moreover, our results indicate that the temporal increase in cellular stresses is due to increasing cell pulling forces transmitted via integrin-mediated cell adhesion, consistent with the need for larger intercellular pulling forces to compact cell aggregates.
细胞球状体作为一个极好的平台,可在受控的三维 (3D) 环境中研究组织行为和肿瘤生长。虽然分子和细胞研究长期以来一直使用该平台来研究 3D 中的细胞行为,但直到最近,使用细胞球状体的研究才表明微环境力学在广泛的细胞过程中发挥着重要作用,包括在肿瘤进展过程中。尽管机械线索与细胞行为的相关性以及使用二维细胞培养系统进行的大量力学研究已经得到充分证实,但在不断生长的细胞聚集体中内源性细胞力的空间和时间变化仍不清楚。我们使用具有受控物理化学性质的细胞大小的油滴作为间充质细胞聚集体中的力传感器,结果表明,细胞产生的应力的大小仅与球形聚集体内的空间位置弱相关,但在聚集体压实和生长过程中随时间显著增加。此外,我们的结果表明,细胞应力的时间增加是由于通过整联蛋白介导的细胞黏附传递的细胞牵拉力增加所致,这与需要更大的细胞间牵拉力来压实细胞聚集体一致。