Suppr超能文献

利用磁阻生物传感器检测卡介苗细菌:迈向结核病即时检测全电子平台的一步。

Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection.

机构信息

ICVS: Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT: Government Associate Laboratory, Braga/ Guimarães, Campus de Gualtar, 4710-057 Braga, Portugal; INL: International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal.

INESC TEC, Campus da FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

出版信息

Biosens Bioelectron. 2018 Feb 15;100:259-265. doi: 10.1016/j.bios.2017.09.004. Epub 2017 Sep 6.

Abstract

Tuberculosis is one of the major public health concerns. This highly contagious disease affects more than 10.4 million people, being a leading cause of morbidity by infection. Tuberculosis is diagnosed at the point-of-care by the Ziehl-Neelsen sputum smear microscopy test. Ziehl-Neelsen is laborious, prone to human error and infection risk, with a limit of detection of 10 cells/mL. In resource-poor nations, a more practical test, with lower detection limit, is paramount. This work uses a magnetoresistive biosensor to detect BCG bacteria for tuberculosis diagnosis. Herein we report: i) nanoparticle assembly method and specificity for tuberculosis detection; ii) demonstration of proportionality between BCG cell concentration and magnetoresistive voltage signal; iii) application of multiplicative signal correction for systematic effects removal; iv) investigation of calibration effectiveness using chemometrics methods; and v) comparison with state-of-the-art point-of-care tuberculosis biosensors. Results present a clear correspondence between voltage signal and cell concentration. Multiplicative signal correction removes baseline shifts within and between biochip sensors, allowing accurate and precise voltage signal between different biochips. The corrected signal was used for multivariate regression models, which significantly decreased the calibration standard error from 0.50 to 0.03log (cells/mL). Results show that Ziehl-Neelsen detection limits and below are achievable with the magnetoresistive biochip, when pre-processing and chemometrics are used.

摘要

结核病是主要的公共卫生关注点之一。这种高度传染性疾病影响了超过 1040 万人,是导致发病的主要原因。结核病是通过 Ziehl-Neelsen 痰液涂片显微镜检查在护理点进行诊断的。Ziehl-Neelsen 操作繁琐,容易出现人为错误和感染风险,检测极限为 10 个细胞/mL。在资源匮乏的国家,检测下限更低的更实用的测试方法至关重要。本工作使用磁电阻生物传感器来检测结核分枝杆菌以进行结核病诊断。在此,我们报告:i)用于结核病检测的纳米颗粒组装方法和特异性;ii)BCG 细胞浓度与磁电阻电压信号之间的比例关系的证明;iii)应用乘法信号校正消除系统效应;iv)使用化学计量学方法研究校准效果;以及 v)与最先进的即时护理结核病生物传感器的比较。结果表明,电压信号与细胞浓度之间存在明显的对应关系。乘法信号校正消除了生物芯片传感器内部和之间的基线偏移,从而在不同的生物芯片之间实现了准确和精确的电压信号。校正后的信号用于多元回归模型,将校准标准误差从 0.50 显著降低到 0.03log(细胞/mL)。结果表明,当使用预处理和化学计量学方法时,磁电阻生物芯片可以实现 Ziehl-Neelsen 的检测极限及以下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验