Barberis Matteo, Verbruggen Paul
Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
NPJ Syst Biol Appl. 2017 Sep 19;3:26. doi: 10.1038/s41540-017-0028-x. eCollection 2017.
Network complexity is required to lend cellular processes flexibility to respond timely to a variety of dynamic signals, while simultaneously warranting robustness to protect cellular integrity against perturbations. The cell cycle serves as a paradigm for such processes; it maintains its frequency and temporal structure (although these may differ among cell types) under the former, but accelerates under the latter. Cell cycle molecules act together in time and in different cellular compartments to execute cell type-specific programs. Strikingly, the timing at which molecular switches occur is controlled by abundance and stoichiometry of multiple proteins within complexes. However, traditional methods that investigate one effector at a time are insufficient to understand how modulation of protein complex dynamics at cell cycle transitions shapes responsiveness, yet preserving robustness. To overcome this shortcoming, we propose a multidisciplinary approach to gain a systems-level understanding of quantitative cell cycle dynamics in mammalian cells from a new perspective. By suggesting advanced experimental technologies and dedicated modeling approaches, we present innovative strategies (i) to measure absolute protein concentration in vivo, and (ii) to determine how protein dosage, e.g., altered protein abundance, and spatial (de)regulation may affect timing and robustness of phase transitions. We describe a method that we name "Maximum Allowable mammalian Trade-Off-Weight" (MAmTOW), which may be realized to determine the upper limit of gene copy numbers in mammalian cells. These aspects, not covered by current systems biology approaches, are essential requirements to generate computational models and identify (sub)network-centered nodes underlying a plethora of pathological conditions.
网络复杂性对于赋予细胞过程灵活性以及时响应各种动态信号是必需的,同时确保细胞的稳健性以保护细胞完整性免受干扰。细胞周期就是这类过程的一个范例;在前一种情况下,它维持其频率和时间结构(尽管这些在不同细胞类型中可能有所不同),但在后一种情况下会加速。细胞周期分子在不同的细胞区室中协同作用,以执行细胞类型特异性程序。引人注目的是,分子开关发生的时间是由复合物中多种蛋白质的丰度和化学计量控制的。然而,传统的一次研究一种效应物的方法不足以理解细胞周期转变时蛋白质复合物动力学的调节如何塑造细胞的响应能力,同时又保持稳健性。为了克服这一缺点,我们提出了一种多学科方法,从一个新的角度对哺乳动物细胞中的定量细胞周期动力学进行系统层面的理解。通过推荐先进的实验技术和专门的建模方法,我们提出了创新策略:(i)在体内测量绝对蛋白质浓度,以及(ii)确定蛋白质剂量,例如改变的蛋白质丰度,以及空间(去)调节如何影响相变的时间和稳健性。我们描述了一种我们称之为“最大允许哺乳动物权衡权重”(MAmTOW)的方法,该方法可以用来确定哺乳动物细胞中基因拷贝数的上限。这些目前系统生物学方法未涵盖的方面,是生成计算模型和识别众多病理状况背后以(子)网络为中心的节点的基本要求。