Suppr超能文献

动力系统中的拓扑因果关系。

Topological Causality in Dynamical Systems.

作者信息

Harnack Daniel, Laminski Erik, Schünemann Maik, Pawelzik Klaus Richard

机构信息

University of Bremen, 28359 Bremen, Germany and Center for Cognitive Science (ZKW), 28359 Bremen, Germany.

出版信息

Phys Rev Lett. 2017 Sep 1;119(9):098301. doi: 10.1103/PhysRevLett.119.098301.

Abstract

Determination of causal relations among observables is of fundamental interest in many fields dealing with complex systems. Since nonlinear systems generically behave as wholes, classical notions of causality assuming separability of subsystems often turn out inadequate. Still lacking is a mathematically transparent measure of the magnitude of effective causal influences in cyclic systems. For deterministic systems we found that the expansions of mappings among time-delay state space reconstructions from different observables not only reflect the directed coupling strengths, but also the dependency of effective influences on the system's temporally varying state. Estimation of the expansions from pairs of time series is straightforward and used to define novel causality indices. Mathematical and numerical analysis demonstrate that they reveal the asymmetry of causal influences including their time dependence, as well as provide measures for the effective strengths of causal links in complex systems.

摘要

确定可观测变量之间的因果关系在许多处理复杂系统的领域中具有根本重要性。由于非线性系统通常整体表现,假设子系统可分离性的经典因果概念往往被证明是不够的。目前仍然缺乏一种在循环系统中对有效因果影响大小进行数学上清晰透明的度量。对于确定性系统,我们发现从不同可观测变量进行的时延状态空间重构之间的映射展开不仅反映了定向耦合强度,还反映了有效影响对系统随时间变化状态的依赖性。从时间序列对中估计展开是直接的,并用于定义新的因果指数。数学和数值分析表明,它们揭示了因果影响的不对称性,包括其时间依赖性,还为复杂系统中因果联系的有效强度提供了度量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验