Trébulle Pauline, Nicaud Jean-Marc, Leplat Christophe, Elati Mohamed
Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
Université d'Évry, Évry, 91000 France.
NPJ Syst Biol Appl. 2017 Aug 11;3:21. doi: 10.1038/s41540-017-0024-1. eCollection 2017.
Complex phenotypes, such as lipid accumulation, result from cooperativity between regulators and the integration of multiscale information. However, the elucidation of such regulatory programs by experimental approaches may be challenging, particularly in context-specific conditions. In particular, we know very little about the regulators of lipid accumulation in the oleaginous yeast of industrial interest . This lack of knowledge limits the development of this yeast as an industrial platform, due to the time-consuming and costly laboratory efforts required to design strains with the desired phenotypes. In this study, we aimed to identify context-specific regulators and mechanisms, to guide explorations of the regulation of lipid accumulation in . Using gene regulatory network inference, and considering the expression of 6539 genes over 26 time points from GSE35447 for biolipid production and a list of 151 transcription factors, we reconstructed a gene regulatory network comprising 111 transcription factors, 4451 target genes and 17048 regulatory interactions (YL-GRN-1) supported by evidence of protein-protein interactions. This study, based on network interrogation and wet laboratory validation (a) highlights the relevance of our proposed measure, the transcription factors influence, for identifying phases corresponding to changes in physiological state without prior knowledge (b) suggests new potential regulators and drivers of lipid accumulation and
复杂的表型,如脂质积累,是由调节因子之间的协同作用和多尺度信息的整合所导致的。然而,通过实验方法阐明此类调控程序可能具有挑战性,尤其是在特定背景条件下。特别是,我们对具有工业价值的产油酵母中脂质积累的调节因子了解甚少。由于设计具有所需表型的菌株需要耗费大量时间和成本的实验室工作,这种知识的缺乏限制了这种酵母作为工业平台的发展。在本研究中,我们旨在识别特定背景下的调节因子和机制,以指导对脂质积累调控的探索。利用基因调控网络推断,并考虑来自GSE35447的26个时间点上6539个基因用于生物脂质生产的表达情况以及151个转录因子列表,我们重建了一个基因调控网络,该网络由111个转录因子、4451个靶基因和17048个调控相互作用组成(YL-GRN-1),并得到了蛋白质-蛋白质相互作用证据的支持。本研究基于网络探究和湿实验室验证,(a)突出了我们提出的衡量标准——转录因子影响,对于在没有先验知识的情况下识别与生理状态变化相对应的阶段的相关性;(b)提出了脂质积累的新的潜在调节因子和驱动因素,以及