Ásgeirsson Vilhjálmur, Bauer Christoph A, Grimme Stefan
Mulliken Center for Theoretical Chemistry , Institute of Physical and Theoretical Chemistry , University of Bonn , Beringstr. 4 , 53115 Bonn , Germany . Email:
Faculty of Physical Sciences and Science Institute , University of Iceland , 107 Reykjavík , Iceland.
Chem Sci. 2017 Jul 1;8(7):4879-4895. doi: 10.1039/c7sc00601b. Epub 2017 May 5.
We introduce a fully stand-alone version of the Quantum Chemistry Electron Ionization Mass Spectra (QCEIMS) program [S. Grimme, , 2013, , 6306] allowing efficient simulations for molecules composed of elements with atomic numbers up to = 86. The recently developed extended tight-binding semi-empirical method GFN-xTB has been combined with QCEIMS, thereby eliminating dependencies on third-party electronic structure software. Furthermore, for reasonable calculations of ionization potentials, as required by the method, a second tight-binding variant, IPEA-xTB, is introduced here. This novel combination of methods allows the automatic, fast and reasonably accurate computation of electron ionization mass spectra for structurally different molecules across the periodic table. In order to validate and inspect the transferability of the method, we perform large-scale simulations for some representative organic, organometallic, and main-group inorganic systems. Theoretical spectra for 23 molecules are compared directly to experimental data taken from standard databases. For the first time, realistic quantum chemistry based EI-MS for organometallic systems like ferrocene or copper(ii)acetylacetonate are presented. Compared to previously used semiempirical methods, GFN-xTB is faster, more robust, and yields overall higher quality spectra. The partially analysed theoretical reaction and fragmentation mechanisms are chemically reasonable and reveal in unprecedented detail the extreme complexity of high energy gas phase ion chemistry including complicated rearrangement reactions prior to dissociation.
我们推出了量子化学电子电离质谱(QCEIMS)程序的完全独立版本[S. 格林姆,,2013,,6306],该版本能够对原子序数高达 = 86的元素组成的分子进行高效模拟。最近开发的扩展紧束缚半经验方法GFN-xTB已与QCEIMS相结合,从而消除了对第三方电子结构软件的依赖。此外,为了按照该方法的要求合理计算电离能,这里引入了第二种紧束缚变体IPEA-xTB。这种新颖的方法组合能够自动、快速且合理准确地计算整个周期表中结构不同分子的电子电离质谱。为了验证和检验该方法的可转移性,我们对一些代表性的有机、有机金属和主族无机体系进行了大规模模拟。将23种分子的理论光谱直接与从标准数据库获取的实验数据进行比较。首次展示了基于真实量子化学的二茂铁或乙酰丙酮铜(II)等有机金属体系的电子电离质谱。与之前使用的半经验方法相比,GFN-xTB速度更快、更稳健,并且总体上能产生更高质量的光谱。部分分析的理论反应和碎片化机制在化学上是合理的,并且以前所未有的细节揭示了高能气相离子化学的极端复杂性,包括解离前复杂的重排反应。