Shukla Prashant, Khodade Vinayak S, SharathChandra Mallojjala, Chauhan Preeti, Mishra Saurabh, Siddaramappa Shivakumara, Pradeep Bulagonda Eswarappa, Singh Amit, Chakrapani Harinath
Department of Microbiology and Cell Biology , Centre for Infectious Disease and Research , Indian Institute of Science , Bangalore 5600012 , Karnataka , India . Email:
International Centre for Genetic Engineering and Biotechnology , New Delhi , India.
Chem Sci. 2017 Jul 1;8(7):4967-4972. doi: 10.1039/c7sc00873b. Epub 2017 Apr 27.
Understanding the mechanisms of antimicrobial resistance (AMR) will help launch a counter-offensive against human pathogens that threaten our ability to effectively treat common infections. Herein, we report bis(4-nitrobenzyl)sulfanes, which are activated by a bacterial enzyme to produce hydrogen sulfide (HS) gas. We found that HS helps maintain redox homeostasis and protects bacteria against antibiotic-triggered oxidative stress "on demand", through activation of alternate respiratory oxidases and cellular antioxidants. We discovered, a hitherto unknown role for this gas, that chemical inhibition of HS biosynthesis reversed antibiotic resistance in multidrug-resistant (MDR) uropathogenic strains of clinical origin, whereas exposure to the HS donor restored drug tolerance. Together, our study provides a greater insight into the dynamic defence mechanisms of this gas, modes of antibiotic action as well as resistance while progressing towards new pharmacological targets to address AMR.
了解抗菌药物耐药性(AMR)的机制将有助于对威胁我们有效治疗常见感染能力的人类病原体发起反击。在此,我们报告了双(4-硝基苄基)硫烷,其被一种细菌酶激活以产生硫化氢(HS)气体。我们发现,HS有助于维持氧化还原稳态,并通过激活交替呼吸氧化酶和细胞抗氧化剂,“按需”保护细菌免受抗生素引发的氧化应激。我们发现了这种气体一个迄今未知的作用,即化学抑制HS生物合成可逆转临床来源的多重耐药(MDR)尿路致病性菌株的抗生素耐药性,而暴露于HS供体则可恢复药物耐受性。总之,我们的研究为这种气体的动态防御机制、抗生素作用模式以及耐药性提供了更深入的见解,同时朝着解决AMR的新药理学靶点迈进。