Suppr超能文献

基于纳米纤维的缝线可诱导内源性抗菌肽。

Nanofiber-based sutures induce endogenous antimicrobial peptide.

机构信息

Department of Surgery-Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Chongqing Academy of Animal Sciences & Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.

出版信息

Nanomedicine (Lond). 2017 Nov;12(21):2597-2609. doi: 10.2217/nnm-2017-0161. Epub 2017 Sep 29.

Abstract

AIM

The aim of this study was to develop nanofiber-based sutures capable of inducing endogenous antimicrobial peptide production.

METHODS

We used co-axial electrospinning deposition and rolling to fabricate sutures containing pam3CSK4 peptide and 25-hydroxyvitamin D (25D).

RESULTS

The diameters and mechanical properties of the sutures were adjustable to meet the criteria of United States Pharmacopeia designation. 25D exhibited a sustained release from nanofiber sutures over 4 weeks. Pam3CSK4 peptide also showed an initial burst followed by a sustained release over 4 weeks. The co-delivery of 25D and pam3CSK4 peptide enhanced cathelicidin antimicrobial peptide production from U937 cells and keratinocytes compared with 25D delivery alone. In addition, the 25D/pam3CSK4 peptide co-loaded nanofiber sutures did not significantly influence proliferation of keratinocytes, fibroblasts, or the monocytic cell lines U937 and HL-60.

CONCLUSION

The use of 25D/pam3CSK4 peptide co-loaded nanofiber sutures could potentially induce endogenous antimicrobial peptide production and reduce surgical site infections.

摘要

目的

本研究旨在开发能够诱导内源性抗菌肽产生的基于纳米纤维的缝线。

方法

我们使用同轴电纺沉积和滚动技术来制备含有 Pam3CSK4 肽和 25-羟维生素 D(25D)的缝线。

结果

缝线的直径和机械性能可调节以满足美国药典的标准。25D 在 4 周内从纳米纤维缝线中持续释放。Pam3CSK4 肽也表现出初始突释,然后在 4 周内持续释放。与单独使用 25D 相比,25D 和 Pam3CSK4 肽的共递送增强了 U937 细胞和角质形成细胞中防御素抗菌肽的产生。此外,载有 25D/Pam3CSK4 肽的纳米纤维缝线对角质形成细胞、成纤维细胞以及单核细胞系 U937 和 HL-60 的增殖没有显著影响。

结论

使用载有 25D/Pam3CSK4 肽的纳米纤维缝线可能会诱导内源性抗菌肽的产生,并减少手术部位感染。

相似文献

1
Nanofiber-based sutures induce endogenous antimicrobial peptide.
Nanomedicine (Lond). 2017 Nov;12(21):2597-2609. doi: 10.2217/nnm-2017-0161. Epub 2017 Sep 29.
3
Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver.
Nanomedicine. 2017 May;13(4):1435-1445. doi: 10.1016/j.nano.2017.01.016. Epub 2017 Feb 6.
4
Local Sustained Delivery of 25-Hydroxyvitamin D3 for Production of Antimicrobial Peptides.
Pharm Res. 2015 Sep;32(9):2851-62. doi: 10.1007/s11095-015-1667-5. Epub 2015 Mar 14.
5
1α,25-dihydroxyvitamin D-eluting nanofibrous dressings induce endogenous antimicrobial peptide expression.
Nanomedicine (Lond). 2018 Jun;13(12):1417-1432. doi: 10.2217/nnm-2018-0011. Epub 2018 Jul 4.
6
Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds.
Mol Pharm. 2019 May 6;16(5):2011-2020. doi: 10.1021/acs.molpharmaceut.8b01345. Epub 2019 Apr 8.
7
Vitamin D-induced up-regulation of human keratinocyte cathelicidin anti-microbial peptide expression involves retinoid X receptor α.
Cell Tissue Res. 2016 Nov;366(2):353-362. doi: 10.1007/s00441-016-2449-z. Epub 2016 Jun 30.
8
Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing.
Acta Biomater. 2016 Jul 15;39:146-155. doi: 10.1016/j.actbio.2016.05.008. Epub 2016 May 6.
9
Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism.
J Clin Invest. 2007 Mar;117(3):803-11. doi: 10.1172/JCI30142. Epub 2007 Feb 8.
10
Effects of 25-hydroxyvitamin D3 on cathelicidin production and antibacterial function of human oral keratinocytes.
Cell Immunol. 2013 May-Jun;283(1-2):45-50. doi: 10.1016/j.cellimm.2013.06.007. Epub 2013 Jun 19.

引用本文的文献

1
A comprehensive practical review of acupoint embedding as a semi-permanent acupuncture: A mini review.
Medicine (Baltimore). 2024 Jun 7;103(23):e38314. doi: 10.1097/MD.0000000000038314.
2
Interdisciplinary approach to synthesis, stability and antimicrobial activity of silver nanoparticles.
Postepy Dermatol Alergol. 2023 Jun;40(3):390-397. doi: 10.5114/ada.2023.128978. Epub 2023 Jul 15.
3
Immune evaluation of granulocyte-macrophage colony stimulating factor loaded hierarchically 3D nanofiber scaffolds in a humanized mice model.
Front Bioeng Biotechnol. 2023 Mar 24;11:1159068. doi: 10.3389/fbioe.2023.1159068. eCollection 2023.
4
Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation.
Antibiotics (Basel). 2023 Feb 9;12(2):361. doi: 10.3390/antibiotics12020361.
5
Electrospun Nanofibers for Wound Management.
ChemNanoMat. 2022 Jul;8(7). doi: 10.1002/cnma.202100349. Epub 2021 Nov 1.
6
Electrostatic flocking of salt-treated microfibers and nanofiber yarns for regenerative engineering.
Mater Today Bio. 2021 Nov 26;12:100166. doi: 10.1016/j.mtbio.2021.100166. eCollection 2021 Sep.
7
Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances.
J Funct Biomater. 2021 Oct 28;12(4):59. doi: 10.3390/jfb12040059.
9
Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanuts") and their potential applications in hemostasis.
Biomaterials. 2018 Oct;179:46-59. doi: 10.1016/j.biomaterials.2018.06.031. Epub 2018 Jun 22.
10
1α,25-dihydroxyvitamin D-eluting nanofibrous dressings induce endogenous antimicrobial peptide expression.
Nanomedicine (Lond). 2018 Jun;13(12):1417-1432. doi: 10.2217/nnm-2018-0011. Epub 2018 Jul 4.

本文引用的文献

1
Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver.
Nanomedicine. 2017 May;13(4):1435-1445. doi: 10.1016/j.nano.2017.01.016. Epub 2017 Feb 6.
2
Meta-analysis of the potential economic impact following introduction of absorbable antimicrobial sutures.
Br J Surg. 2017 Jan;104(2):e134-e144. doi: 10.1002/bjs.10443. Epub 2017 Jan 17.
3
Development of Absorbable, Antibiotic-Eluting Sutures for Ophthalmic Surgery.
Transl Vis Sci Technol. 2017 Jan 3;6(1):1. doi: 10.1167/tvst.6.1.1. eCollection 2017 Jan.
4
Vitamin D deficiency in critically ill patients with traumatic injuries.
Burns Trauma. 2016 Oct 17;4:28. doi: 10.1186/s41038-016-0054-8. eCollection 2016.
5
Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing.
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:884-93. doi: 10.1016/j.msec.2016.07.074. Epub 2016 Jul 29.
7
Suture materials - Current and emerging trends.
J Biomed Mater Res A. 2016 Jun;104(6):1544-59. doi: 10.1002/jbm.a.35683. Epub 2016 Apr 4.
8
Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections.
Int J Nanomedicine. 2015 Oct 1;10 Suppl 1(Suppl 1):159-70. doi: 10.2147/IJN.S82211. eCollection 2015.
10
Nanostructured medical sutures with antibacterial properties.
Biomaterials. 2015 Jun;52:291-300. doi: 10.1016/j.biomaterials.2015.02.039. Epub 2015 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验