文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳寡糖包被的氧化铁纳米颗粒的毒性评估

toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles.

作者信息

Shukla Sudeep, Jadaun Alka, Arora Vikas, Sinha Raj Kumar, Biyani Neha, Jain V K

机构信息

School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.

出版信息

Toxicol Rep. 2014 Nov 7;2:27-39. doi: 10.1016/j.toxrep.2014.11.002. eCollection 2015.


DOI:10.1016/j.toxrep.2014.11.002
PMID:28962334
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5598369/
Abstract

Iron oxide nanoparticles (INPs) have potential biological, biomedical and environmental applications. These applications require surface modification of the iron oxide nanoparticles, which makes it non-toxic, biocompatible, stable and non-agglomerative in natural and biological surroundings. In the present study, iron oxide nanoparticles (INPs) and chitosan oligosaccharide coated iron oxide nanoparticles (CSO-INPs) were synthesized to evaluate the effect of surface coating on the stability and toxicity of nanoparticles. Comparative cytotoxicity of nanoparticles was evaluated in HeLa (human cervix carcinoma), A549 (human lung carcinoma) and Hek293 (human embryonic kidney) cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay along with flow cytometry study for cell viability, membrane integrity, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production. Morphological alteration in nanoparticles treated cells was analyzed by Acridine orange/ethidium bromide double staining and electron microscopy. Synthesized nanoparticles were found to be spherical in shape, well dispersed and stable at various pH values, making them suitable for biomedical and environmental applications. The present study also indicates that the chitosan oligosaccharide coating on iron oxide nanoparticles results in the decrease in cellular damage and moderate ROS production, thereby, significantly decreasing the cytotoxic impact of bare iron oxide nanoparticles.

摘要

氧化铁纳米颗粒(INPs)具有潜在的生物、生物医学和环境应用。这些应用需要对氧化铁纳米颗粒进行表面改性,使其在自然和生物环境中无毒、具有生物相容性、稳定且不团聚。在本研究中,合成了氧化铁纳米颗粒(INPs)和壳寡糖包覆的氧化铁纳米颗粒(CSO-INPs),以评估表面包覆对纳米颗粒稳定性和毒性的影响。通过使用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)法以及针对细胞活力、膜完整性、线粒体膜电位(MMP)和活性氧(ROS)产生的流式细胞术研究,评估了纳米颗粒在HeLa(人宫颈癌)、A549(人肺癌)和Hek293(人胚胎肾)细胞中的比较细胞毒性。通过吖啶橙/溴化乙锭双重染色和电子显微镜分析了纳米颗粒处理细胞中的形态学变化。发现合成的纳米颗粒呈球形,在各种pH值下均分散良好且稳定,使其适用于生物医学和环境应用。本研究还表明,氧化铁纳米颗粒上的壳寡糖包覆导致细胞损伤减少和ROS产生适度,从而显著降低了裸露氧化铁纳米颗粒的细胞毒性影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/aba5607acca3/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/bdbc6ed16759/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/c93eddfb9626/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/000d2dc952f5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/e181d6c9e9c0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/5cdd5933f503/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/0a2e90416e6d/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/e8020c129d4a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/ce99fc83eb58/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/81459a4ee402/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/2e641b88fa41/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/dab1d7359a22/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/aba5607acca3/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/bdbc6ed16759/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/c93eddfb9626/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/000d2dc952f5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/e181d6c9e9c0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/5cdd5933f503/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/0a2e90416e6d/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/e8020c129d4a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/ce99fc83eb58/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/81459a4ee402/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/2e641b88fa41/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/dab1d7359a22/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/5598369/aba5607acca3/gr12.jpg

相似文献

[1]
toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles.

Toxicol Rep. 2014-11-7

[2]
Polyethylene Glycol-Chitosan Oligosaccharide-Coated Superparamagnetic Iron Oxide Nanoparticles: A Novel Drug Delivery System for Curcumin Diglutaric Acid.

Biomolecules. 2020-1-2

[3]
Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering.

PLoS One. 2014-1-21

[4]
Structural characterization of polysaccharide-coated iron oxide nanoparticles produced by Staphylococcus warneri, isolated from a thermal spring.

J Basic Microbiol. 2019-4-30

[5]
Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions.

Biochim Biophys Acta. 2014-1

[6]
Inactivation of Pseudomonas aeruginosa by chitosan coated iron oxide nanoparticles.

Recent Pat Biotechnol. 2016-8-5

[7]
Cellular internalization and detailed toxicity analysis of protein-immobilized iron oxide nanoparticles.

J Biomed Mater Res B Appl Biomater. 2015-1

[8]
Inactivation of Pseudomonas aeruginosa by Chitosan Coated Iron Oxide Nanoparticles.

Recent Pat Biotechnol. 2016

[9]
Rice starch coated iron oxide nanoparticles: A theranostic probe for photoacoustic imaging-guided photothermal cancer therapy.

Int J Biol Macromol. 2021-7-31

[10]
Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas.

Colloids Surf B Biointerfaces. 2017-6-1

引用本文的文献

[1]
Bioengineered and biodegradable 3D scaffold for controlled drug delivery of 5-fluorouracil-loaded nanoparticle for bone tumor treatment.

Med Oncol. 2025-7-30

[2]
Analyzing Molecular Determinants of Nanodrugs' Cytotoxic Effects.

Int J Mol Sci. 2025-7-11

[3]
Iron oxide nanoparticles in leukemia: design, diagnostic applications, and therapeutic strategies.

J Egypt Natl Canc Inst. 2025-6-3

[4]
Utilization of Ulva rigida for Fabrication of Iron Oxide Nanoparticles and Its Physicochemical Characterization.

Appl Biochem Biotechnol. 2025-4-29

[5]
Development of Solid Nanosystem for Delivery of Chlorhexidine with Increased Antimicrobial Activity and Decreased Cytotoxicity: Characterization and In Vitro and In Ovo Toxicological Screening.

Molecules. 2025-1-3

[6]
Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects.

Int J Mol Sci. 2024-11-8

[7]
Encapsulation of Inositol Hexakisphosphate with Chitosan via Gelation to Facilitate Cellular Delivery and Programmed Cell Death in Human Breast Cancer Cells.

Bioengineering (Basel). 2024-9-17

[8]
Simultaneous Removal of As(iii) and As(v) from Aqueous Solution by Using Iron-Functionalized Polythiophene: A Novel Approach toward Water Treatment.

ACS Omega. 2024-8-22

[9]
Enhanced Biocompatibility by Evaluating the Cytotoxic and Genotoxic Effects of Magnetic Iron Oxide Nanoparticles and Chitosan on Hepatocellular Carcinoma Cells (HCC).

Cell Biochem Biophys. 2024-6

[10]
Ammonium release in synthetic and human urine by a urease immobilized nanoconstruct.

RSC Adv. 2024-2-27

本文引用的文献

[1]
Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering.

PLoS One. 2014-1-21

[2]
Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung.

Nanotechnology. 2013-9-5

[3]
Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells.

Toxicol In Vitro. 2013-1-26

[4]
Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles.

Chem Rev. 2012-4-11

[5]
Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION).

Nano Rev. 2010

[6]
The multikinase inhibitor Sorafenib displays significant antiproliferative effects and induces apoptosis via caspase 3, 7 and PARP in B- and T-lymphoblastic cells.

BMC Cancer. 2010-10-15

[7]
Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties.

Nanotechnology. 2010-9-6

[8]
Risk assessment of engineered nanomaterials and nanotechnologies--a review.

Toxicology. 2010-1-25

[9]
Cell toxicity of superparamagnetic iron oxide nanoparticles.

J Colloid Interface Sci. 2009-8-15

[10]
Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery.

Mol Pharm. 2009

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索