Suppr超能文献

使用遗传算法对心脏动作电位模型进行高效参数化。

Efficient parameterization of cardiac action potential models using a genetic algorithm.

作者信息

Cairns Darby I, Fenton Flavio H, Cherry E M

机构信息

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA.

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Chaos. 2017 Sep;27(9):093922. doi: 10.1063/1.5000354.

Abstract

Finding appropriate values for parameters in mathematical models of cardiac cells is a challenging task. Here, we show that it is possible to obtain good parameterizations in as little as 30-40 s when as many as 27 parameters are fit simultaneously using a genetic algorithm and two flexible phenomenological models of cardiac action potentials. We demonstrate how our implementation works by considering cases of "model recovery" in which we attempt to find parameter values that match model-derived action potential data from several cycle lengths. We assess performance by evaluating the parameter values obtained, action potentials at fit and non-fit cycle lengths, and bifurcation plots for fidelity to the truth as well as consistency across different runs of the algorithm. We also fit the models to action potentials recorded experimentally using microelectrodes and analyze performance. We find that our implementation can efficiently obtain model parameterizations that are in good agreement with the dynamics exhibited by the underlying systems that are included in the fitting process. However, the parameter values obtained in good parameterizations can exhibit a significant amount of variability, raising issues of parameter identifiability and sensitivity. Along similar lines, we also find that the two models differ in terms of the ease of obtaining parameterizations that reproduce model dynamics accurately, most likely reflecting different levels of parameter identifiability for the two models.

摘要

为心脏细胞数学模型中的参数找到合适的值是一项具有挑战性的任务。在此,我们表明,当使用遗传算法和两种灵活的心脏动作电位唯象模型同时拟合多达27个参数时,在短短30 - 40秒内就有可能获得良好的参数化。我们通过考虑“模型恢复”的情况来展示我们的实现方法,在这种情况下,我们试图找到与来自几个心动周期长度的模型衍生动作电位数据相匹配的参数值。我们通过评估获得的参数值、拟合和未拟合心动周期长度的动作电位以及用于保真度和算法不同运行之间一致性的分岔图来评估性能。我们还将模型拟合到使用微电极实验记录的动作电位并分析性能。我们发现我们的实现方法能够有效地获得与拟合过程中所包含的基础系统所展示的动力学高度一致的模型参数化。然而,良好参数化中获得的参数值可能会表现出显著的变异性,这就引发了参数可识别性和敏感性的问题。同样,我们还发现这两种模型在准确再现模型动力学的参数化获取难易程度方面存在差异,这很可能反映了两种模型参数可识别性的不同水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验