Suppr超能文献

使用先进的自适应微调卷积神经网络进行黑色素瘤和非黑色素瘤皮肤癌的自动诊断。

Automatic melanoma and non-melanoma skin cancer diagnosis using advanced adaptive fine-tuned convolution neural networks.

作者信息

Khan Muhammad Amir, Mazhar Tehseen, Ali Muhammad Danish, Khattak Umar Farooq, Shahzad Tariq, Saeed Mamoon M, Hamam Habib

机构信息

School of Computing Sciences, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Shah Alam 40450, Malaysia.

School of Computer Science, National College of Business Administration and Economics, Lahore 54000, Pakistan.

出版信息

Discov Oncol. 2025 Apr 30;16(1):645. doi: 10.1007/s12672-025-02279-8.

Abstract

Skin Cancer is an extensive and possibly dangerous disorder that requires early detection for effective treatment. Add specific global statistics on skin cancer prevalence and mortality to emphasize the importance of early detection. Example: "Skin cancer accounts for 1 in 5 diagnosed cancers globally, with melanoma causing over 60,000 deaths annually. Manual skin cancer screening is both time-intensive and expensive. Deep learning (DL) techniques have shown exceptional performance in various applications and have been applied to systematize skin cancer diagnosis. However, training DL models for skin cancer diagnosis is challenging due to limited available data and the risk of overfitting. Traditionally approaches have High computational costs, a lack of interpretability, deal with numerous hyperparameters and spatial variation have always been problems with machine learning (ML) and DL. An innovative method called adaptive learning has been developed to overcome these problems. In this research, we advise an intelligent computer-aided system for automatic skin cancer diagnosis using a two-stage transfer learning approach and Pre-trained Convolutional Neural Networks (CNNs). CNNs are well-suited for learning hierarchical features from images. Annotated skin cancer photographs are utilized to detect ROIs and reset the initial layer of the pre-trained CNN. The lower-level layers learn about the characteristics and patterns of lesions and unaffected areas by fine-tuning the model. To capture high-level, global features specific to skin cancer, we replace the fully connected (FC) layers, responsible for encoding such features, with a new FC layer based on principal component analysis (PCA). This unsupervised technique enables the mining of discriminative features from the skin cancer images, effectively mitigating overfitting concerns and letting the model adjust structural features of skin cancer images, facilitating effective detection of skin cancer features. The system shows great potential in facilitating the initial screening of skin cancer patients, empowering healthcare professionals to make timely decisions regarding patient referrals to dermatologists or specialists for further diagnosis and appropriate treatment. Our advanced adaptive fine-tuned CNN approach for automatic skin cancer diagnosis offers a valuable tool for efficient and accurate early detection. By leveraging DL and transfer learning techniques, the system has the possible to transform skin cancer diagnosis and improve patient outcomes.

摘要

皮肤癌是一种广泛且可能危险的疾病,需要早期检测以进行有效治疗。补充关于皮肤癌患病率和死亡率的具体全球统计数据,以强调早期检测的重要性。例如:“皮肤癌占全球确诊癌症的五分之一,黑色素瘤每年导致超过60000人死亡。手动皮肤癌筛查既耗时又昂贵。深度学习(DL)技术在各种应用中表现出色,并已应用于系统化皮肤癌诊断。然而,由于可用数据有限和过拟合风险,训练用于皮肤癌诊断的DL模型具有挑战性。传统方法计算成本高、缺乏可解释性、处理众多超参数以及空间变化一直是机器学习(ML)和DL的问题。一种名为自适应学习的创新方法已被开发出来以克服这些问题。在本研究中,我们建议使用两阶段迁移学习方法和预训练卷积神经网络(CNN)构建一个用于自动皮肤癌诊断的智能计算机辅助系统。CNN非常适合从图像中学习分层特征。利用带注释的皮肤癌照片来检测感兴趣区域(ROI)并重置预训练CNN的初始层。通过微调模型,较低层学习病变和未受影响区域的特征和模式。为了捕获特定于皮肤癌的高级全局特征,我们用基于主成分分析(PCA)的新全连接(FC)层替换负责编码此类特征的全连接层。这种无监督技术能够从皮肤癌图像中挖掘判别特征,有效减轻过拟合问题,并使模型能够调整皮肤癌图像的结构特征,便于有效检测皮肤癌特征。该系统在促进皮肤癌患者的初步筛查方面显示出巨大潜力,使医疗保健专业人员能够及时做出关于将患者转诊给皮肤科医生或专家进行进一步诊断和适当治疗的决定。我们用于自动皮肤癌诊断的先进自适应微调CNN方法提供了一个用于高效准确早期检测的有价值工具。通过利用DL和迁移学习技术,该系统有可能改变皮肤癌诊断并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12044131/47baee749a96/12672_2025_2279_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验