Georgiadis Panagiotis, Gkouvrikos Emmanouil V, Vrochidou Eleni, Kalampokas Theofanis, Papakostas George A
MLV Research Group, Department of Informatics, Democritus University of Thrace, 65404 Kavala, Greece.
Diagnostics (Basel). 2025 Feb 3;15(3):352. doi: 10.3390/diagnostics15030352.
This work brings to light the importance of forming large training datasets with diverse images generated and proposes an image dataset merging application, namely, the Data Merger App, to streamline the management and synthesis of large-scale datasets. The Data Merger can recognize common classes across various datasets and provides tools to combine and organize them in a well-structured and easily accessible way. A case study is then presented, leveraging four different Convolutional Neural Network (CNN) models, VGG16, ResNet50, MobileNetV3-small, and DenseNet-161, and a Visual Transformer (ViT), to benchmark their performance to classify skin cancer images, when trained on single datasets and on enhanced hyperdatasets generated by the Data Merger App. Extended experimental results indicated that enhanced hyperdatasets are efficient and able to improve the accuracies of classification models, whether the models are trained from scratch or by using Transfer Learning. Moreover, the ViT model was reported for higher classification accuracies compared to CNNs on datasets with a limited number of classes, reporting 91.87% accuracy for 9 classes, as well as in the case of enhanced hyperdatasets with multiple numbers of classes, reporting accuracy of 58% for 32 classes. In essence, this work demonstrates the great significance of data combination, as well as the utility value of the developed prototype web application as a critical tool for researchers and data scientists, enabling them to easily handle complex datasets, combine datasets into larger diverse versions, to further enhance the generalization ability of models and improve the quality and impact of their work.
这项工作揭示了使用生成的多样化图像形成大型训练数据集的重要性,并提出了一种图像数据集合并应用程序,即数据合并应用程序,以简化大规模数据集的管理和合成。数据合并程序可以识别各个数据集中的常见类别,并提供工具以一种结构良好且易于访问的方式对它们进行组合和组织。然后进行了一个案例研究,利用四种不同的卷积神经网络(CNN)模型,即VGG16、ResNet50、MobileNetV3-small和DenseNet-161,以及一种视觉Transformer(ViT),在单个数据集和由数据合并应用程序生成的增强超数据集上进行训练时,对它们分类皮肤癌图像的性能进行基准测试。扩展的实验结果表明,增强超数据集是有效的,并且能够提高分类模型的准确率,无论模型是从头开始训练还是使用迁移学习。此外,据报道,在类别数量有限的数据集上,ViT模型的分类准确率高于CNN,在9个类别的情况下准确率为91.87%,在具有多个类别的增强超数据集的情况下,32个类别的准确率为58%。本质上,这项工作证明了数据组合的重大意义,以及所开发的原型网络应用程序作为研究人员和数据科学家的关键工具的实用价值,使他们能够轻松处理复杂的数据集,将数据集组合成更大的多样化版本,以进一步提高模型的泛化能力并提升其工作的质量和影响力。