Suppr超能文献

金属促进逆三羧酸循环序列。

Metals promote sequences of the reverse Krebs cycle.

机构信息

Institute of Supramolecular Science and Engineering (ISIS UMR 7006), University of Strasbourg, National Center for Scientific Research (CNRS), F-67000, Strasbourg, France.

出版信息

Nat Ecol Evol. 2017 Nov;1(11):1716-1721. doi: 10.1038/s41559-017-0311-7. Epub 2017 Oct 2.

Abstract

The reverse tricarboxylic acid (rTCA) cycle (also known as the reverse Krebs cycle) is a central anabolic biochemical pathway whose origins are proposed to trace back to geochemistry, long before the advent of enzymes, RNA or cells, and whose imprint remains intimately embedded in the structure of core metabolism. If it existed, a primordial version of the rTCA cycle would necessarily have been catalysed by naturally occurring minerals at the earliest stage of the transition from geochemistry to biochemistry. Here, we report non-enzymatic promotion of multiple reactions of the rTCA cycle in consecutive sequence, whereby 6 of its 11 reactions were promoted by Zn, Cr and Fe in an acidic aqueous solution. Two distinct three-reaction sequences were achieved under a common set of conditions. Selectivity was observed for reduction reactions producing rTCA cycle intermediates compared with those leading off-cycle. Reductive amination of ketoacids to furnish amino acids was observed under similar conditions. The emerging reaction network supports the feasibility of primitive anabolism in an acidic, metal-rich reducing environment.

摘要

逆行三羧酸(rTCA)循环(也称为逆行克雷布斯循环)是一种重要的合成代谢生化途径,其起源可追溯到地球化学,远在酶、RNA 或细胞出现之前,其痕迹仍然深深地嵌入核心代谢的结构中。如果存在,rTCA 循环的原始版本必然是在地球化学向生物化学转变的最早阶段由天然存在的矿物质催化的。在这里,我们报告了在酸性水溶液中,Zn、Cr 和 Fe 连续顺序促进 rTCA 循环的多个反应,其中 6 个反应得到了促进。在一组共同的条件下实现了两个不同的三反应序列。与导致脱环的反应相比,观察到产生 rTCA 循环中间体的还原反应具有选择性。在类似的条件下,观察到酮酸的还原胺化以提供氨基酸。新兴的反应网络支持在酸性、富含金属的还原环境中进行原始合成代谢的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/594a/5659384/95906091658b/emss-73758-f001.jpg

相似文献

1
Metals promote sequences of the reverse Krebs cycle.
Nat Ecol Evol. 2017 Nov;1(11):1716-1721. doi: 10.1038/s41559-017-0311-7. Epub 2017 Oct 2.
2
Aqueous microdroplets promote C-C bond formation and sequences in the reverse tricarboxylic acid cycle.
Nat Ecol Evol. 2023 Nov;7(11):1892-1902. doi: 10.1038/s41559-023-02193-8. Epub 2023 Sep 7.
3
A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of α-ketoacids.
Nat Chem. 2020 Nov;12(11):1016-1022. doi: 10.1038/s41557-020-00560-7. Epub 2020 Oct 12.
4
Recreating ancient metabolic pathways before enzymes.
Bioorg Med Chem. 2019 Jun 15;27(12):2292-2297. doi: 10.1016/j.bmc.2019.03.012. Epub 2019 Mar 7.
5
Iron catalysis at the origin of life.
IUBMB Life. 2017 Jun;69(6):373-381. doi: 10.1002/iub.1632. Epub 2017 May 3.
6
Synthesis and breakdown of universal metabolic precursors promoted by iron.
Nature. 2019 May;569(7754):104-107. doi: 10.1038/s41586-019-1151-1. Epub 2019 May 1.
8
A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile.
Science. 2018 Feb 2;359(6375):559-563. doi: 10.1126/science.aao3407. Epub 2018 Feb 1.
9
Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite.
Environ Sci Technol. 2012 Sep 18;46(18):10031-9. doi: 10.1021/es302137d. Epub 2012 Sep 6.
10
Abiotic origin of the citric acid cycle intermediates.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2501839122. doi: 10.1073/pnas.2501839122. Epub 2025 Apr 21.

引用本文的文献

1
Thermodynamic Constraints on the Citric Acid Cycle and Related Reactions in Ocean World Interiors.
ACS Earth Space Chem. 2025 May 22;9(6):1392-1412. doi: 10.1021/acsearthspacechem.4c00371. eCollection 2025 Jun 19.
2
Abiotic origin of the citric acid cycle intermediates.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2501839122. doi: 10.1073/pnas.2501839122. Epub 2025 Apr 21.
5
Nonenzymatic Hydration of Phosphoenolpyruvate: General Conditions for Hydration in Protometabolism by Searching Across Pathways.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202410698. doi: 10.1002/anie.202410698. Epub 2024 Dec 2.
6
Pinpointing Conditions for a Metabolic Origin of Life: Underlying Mechanisms and the Role of Coenzymes.
Acc Chem Res. 2024 Oct 15;57(20):3032-3043. doi: 10.1021/acs.accounts.4c00423. Epub 2024 Oct 5.
7
Chemical Antiquity in Metabolism.
Acc Chem Res. 2024 Aug 20;57(16):2267-2278. doi: 10.1021/acs.accounts.4c00226. Epub 2024 Jul 31.
8
How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
Acc Chem Res. 2024 Jul 16;57(14):1885-1895. doi: 10.1021/acs.accounts.4c00114. Epub 2024 Jul 5.
9
Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins.
Nat Chem. 2024 Jul;16(7):1200-1208. doi: 10.1038/s41557-024-01490-4. Epub 2024 May 3.
10
Primitive purine biosynthesis connects ancient geochemistry to modern metabolism.
Nat Ecol Evol. 2024 May;8(5):999-1009. doi: 10.1038/s41559-024-02361-4. Epub 2024 Mar 22.

本文引用的文献

1
Sulfate radicals enable a non-enzymatic Krebs cycle precursor.
Nat Ecol Evol. 2017 Mar 13;1(4):83. doi: 10.1038/s41559-017-0083.
2
Iron catalysis at the origin of life.
IUBMB Life. 2017 Jun;69(6):373-381. doi: 10.1002/iub.1632. Epub 2017 May 3.
3
The physiology and habitat of the last universal common ancestor.
Nat Microbiol. 2016 Jul 25;1(9):16116. doi: 10.1038/nmicrobiol.2016.116.
4
Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis.
Life (Basel). 2016 Jul 26;6(3):28. doi: 10.3390/life6030028.
5
Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.
Sci Adv. 2016 Jan 15;2(1):e1501235. doi: 10.1126/sciadv.1501235. eCollection 2016 Jan.
6
The Origin of Life--Out of the Blue.
Angew Chem Int Ed Engl. 2016 Jan 4;55(1):104-21. doi: 10.1002/anie.201506585. Epub 2015 Oct 29.
7
The inner workings of the hydrazine synthase multiprotein complex.
Nature. 2015 Nov 19;527(7578):394-7. doi: 10.1038/nature15517. Epub 2015 Oct 19.
8
Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions.
Chem Commun (Camb). 2015 May 1;51(35):7501-4. doi: 10.1039/c5cc02078f.
10
An origin-of-life reactor to simulate alkaline hydrothermal vents.
J Mol Evol. 2014 Dec;79(5-6):213-27. doi: 10.1007/s00239-014-9658-4. Epub 2014 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验