International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India.
Donald Danforth Plant Science Center, St. Louis, MO, USA.
Plant Biotechnol J. 2018 May;16(5):1024-1033. doi: 10.1111/pbi.12846. Epub 2017 Oct 17.
Aflatoxin contamination in peanuts poses major challenges for vulnerable populations of sub-Saharan Africa and South Asia. Developing peanut varieties to combat preharvest Aspergillus flavus infection and resulting aflatoxin contamination has thus far remained a major challenge, confounded by highly complex peanut-Aspergilli pathosystem. Our study reports achieving a high level of resistance in peanut by overexpressing (OE) antifungal plant defensins MsDef1 and MtDef4.2, and through host-induced gene silencing (HIGS) of aflM and aflP genes from the aflatoxin biosynthetic pathway. While the former improves genetic resistance to A. flavus infection, the latter inhibits aflatoxin production in the event of infection providing durable resistance against different Aspergillus flavus morphotypes and negligible aflatoxin content in several peanut events/lines well. A strong positive correlation was observed between aflatoxin accumulation and decline in transcription of the aflatoxin biosynthetic pathway genes in both OE-Def and HIGS lines. Transcriptomic signatures in the resistant lines revealed key mechanisms such as regulation of aflatoxin synthesis, its packaging and export control, besides the role of reactive oxygen species-scavenging enzymes that render enhanced protection in the OE and HIGS lines. This is the first study to demonstrate highly effective biotechnological strategies for successfully generating peanuts that are near-immune to aflatoxin contamination, offering a panacea for serious food safety, health and trade issues in the semi-arid regions.
花生中的黄曲霉毒素污染对撒哈拉以南非洲和南亚的脆弱人群构成了重大挑战。迄今为止,开发能够防治收获前黄曲霉感染和由此产生的黄曲霉毒素污染的花生品种仍然是一个主要挑战,这一挑战因高度复杂的花生-曲霉病理系统而更加复杂。我们的研究报告通过过度表达(OE)抗真菌植物防御素 MsDef1 和 MtDef4.2 以及通过宿主诱导基因沉默(HIGS)来自黄曲霉毒素生物合成途径的 aflM 和 aflP 基因,在花生中实现了高水平的抗性。前者提高了对黄曲霉感染的遗传抗性,后者在感染时抑制了黄曲霉毒素的产生,从而提供了对不同的黄曲霉形态和几种花生事件/系中微量黄曲霉毒素含量的持久抗性。OE-Def 和 HIGS 系中黄曲霉毒素积累与黄曲霉毒素生物合成途径基因转录下降之间观察到强烈的正相关。抗性系中的转录组特征揭示了关键机制,如调节黄曲霉毒素合成、其包装和出口控制,以及清除活性氧物质的酶的作用,这些酶在 OE 和 HIGS 系中提供了增强的保护。这是首次证明成功生成几乎对黄曲霉毒素污染免疫的花生的高效生物技术策略的研究,为半干旱地区严重的食品安全、健康和贸易问题提供了一种解决方案。