Electron Microscopy Unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11139-11144. doi: 10.1073/pnas.1708609114. Epub 2017 Oct 2.
Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.
金属离子在生物化学的许多方面都起着至关重要的作用。检测它们在蛋白质和细胞中的存在和位置对于理解生物功能非常重要。传统的结构方法,如 X 射线晶体学和低温透射电子显微镜,只有在蛋白质结构解析到原子分辨率时,才能识别蛋白质上的金属原子。我们在这里展示了使用低温环形暗场扫描透射电子显微镜(cryo-STEM)结合单颗粒 3D 重建,在铁蛋白上检测到孤立的 Zn 和 Fe 原子。Zn 原子的位置与通过 X 射线晶体学确定的亚铁氧化酶位置完全吻合。相比之下,Fe 的分布则沿着与提议的从亚铁氧化酶位置到沿二倍轴的矿化核位置的路径相对应的弧形扩散。在这种情况下,基于个体位置的平均值,单颗粒重建被解释为概率分布函数。这些结果为在电子冷冻显微镜和断层扫描的更广泛背景下检测孤立金属原子确立了条件。