Department of Chemistry, University of California , Irvine, California 92697, United States.
J Am Chem Soc. 2017 Oct 25;139(42):15212-15221. doi: 10.1021/jacs.7b08868. Epub 2017 Oct 13.
We clarify mechanistic questions regarding plasmon-driven chemistry and nanoscale photocatalysis within optically confined near-field plasmonic systems. Using surface-enhanced Raman scattering (SERS), we directly monitor the photoinduced reaction dynamics of 4,4'-bipyridine molecules, localized in plasmonic hot spots within individual gold nanosphere oligomers. Our experiment generates surface electrons from the gold nanoparticle using an intense off-molecular resonance continuous wave pump field, and detects radical anion products via SERS. This is done by adopting a dual-wavelength spectroscopic approach. Empirical evidence of plasmon-driven electron transfer is provided for the first time by direct detection of the 4,4'-bipyridine radical anion species localized in the plasmonic hot spots of individual gold nanosphere oligomers, corroborated by open-shell density functional theory calculations. An isotopologue approach using both protonated and deuterated 4,4'-bipyridine molecules demonstrates the single molecule response of plasmon-driven electron transfer occurring in single nanosphere oligomer systems with a 3% yield, a phenomenon unobserved in ensemble measurements under analogous experimental conditions. This mechanism has broad applicability to using nanoscale chemical reactors for surface redox reactions on the subnanometer scale.
我们澄清了在光学限制近场等离子体系统内,等离子体驱动的化学和纳米级光催化的机制问题。我们使用表面增强拉曼散射(SERS),直接监测了在单个金球寡聚体中的等离子体热点内定位的 4,4'-联吡啶分子的光诱导反应动力学。我们的实验使用强非分子共振连续波泵场从金纳米颗粒中产生表面电子,并通过 SERS 检测自由基阴离子产物。这是通过采用双波长光谱方法来实现的。通过直接检测定位在单个金球寡聚体的等离子体热点中的 4,4'-联吡啶自由基阴离子物种,首次提供了等离子体驱动电子转移的实验证据,该证据得到了开壳层密度泛函理论计算的证实。使用质子化和氘代 4,4'-联吡啶分子的同位素方法证明了在单纳米球寡聚体系统中发生的等离子体驱动电子转移的单分子响应,其产率为 3%,在类似的实验条件下进行的整体测量中未观察到这种现象。这种机制具有广泛的适用性,可用于在亚纳米尺度上进行表面氧化还原反应的纳米级化学反应器。