Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, 30322, USA.
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Nat Commun. 2023 May 29;14(1):3105. doi: 10.1038/s41467-023-38809-7.
Epidemiological models are commonly fit to case and pathogen sequence data to estimate parameters and to infer unobserved disease dynamics. Here, we present an inference approach based on sequence data that is well suited for model fitting early on during the expansion of a viral lineage. Our approach relies on a trajectory of segregating sites to infer epidemiological parameters within a Sequential Monte Carlo framework. Using simulated data, we first show that our approach accurately recovers key epidemiological quantities under a single-introduction scenario. We then apply our approach to SARS-CoV-2 sequence data from France, estimating a basic reproduction number of approximately 2.3-2.7 under an epidemiological model that allows for multiple introductions. Our approach presented here indicates that inference approaches that rely on simple population genetic summary statistics can be informative of epidemiological parameters and can be used for reconstructing infectious disease dynamics during the early expansion of a viral lineage.
流行病学模型通常适用于病例和病原体序列数据,以估计参数并推断未观察到的疾病动态。在这里,我们提出了一种基于序列数据的推断方法,非常适合在病毒谱系扩张的早期进行模型拟合。我们的方法依赖于分离位点的轨迹,在序列蒙特卡罗框架内推断流行病学参数。使用模拟数据,我们首先表明,我们的方法在单一引入情景下准确地恢复了关键的流行病学数量。然后,我们将我们的方法应用于来自法国的 SARS-CoV-2 序列数据,在允许多次引入的流行病学模型下估计基本繁殖数约为 2.3-2.7。我们在这里提出的方法表明,依赖于简单的群体遗传汇总统计量的推断方法可以为流行病学参数提供信息,并可用于在病毒谱系早期扩张期间重建传染病动态。