Suppr超能文献

贝叶斯推断在新发传染病发病时间和流行病学特征中的应用。

Bayesian inference for the onset time and epidemiological characteristics of emerging infectious diseases.

机构信息

College of Computer and Information Engineering, Nanjing Tech University, Nanjing, China.

College of Artificial Intelligence, Nanjing Tech University, Nanjing, China.

出版信息

Front Public Health. 2024 May 17;12:1406566. doi: 10.3389/fpubh.2024.1406566. eCollection 2024.

Abstract

BACKGROUND

Emerging infectious diseases pose a significant threat to global public health. Timely detection and response are crucial in mitigating the spread of such epidemics. Inferring the onset time and epidemiological characteristics is vital for accelerating early interventions, but accurately predicting these parameters in the early stages remains challenging.

METHODS

We introduce a Bayesian inference method to fit epidemic models to time series data based on state-space modeling, employing a stochastic Susceptible-Exposed-Infectious-Removed (SEIR) model for transmission dynamics analysis. Our approach uses the particle Markov chain Monte Carlo (PMCMC) method to estimate key epidemiological parameters, including the onset time, the transmission rate, and the recovery rate. The PMCMC algorithm integrates the advantageous aspects of both MCMC and particle filtering methodologies to yield a computationally feasible and effective means of approximating the likelihood function, especially when it is computationally intractable.

RESULTS

To validate the proposed method, we conduct case studies on COVID-19 outbreaks in Wuhan, Shanghai and Nanjing, China, respectively. Using early-stage case reports, the PMCMC algorithm accurately predicted the onset time, key epidemiological parameters, and the basic reproduction number. These findings are consistent with empirical studies and the literature.

CONCLUSION

This study presents a robust Bayesian inference method for the timely investigation of emerging infectious diseases. By accurately estimating the onset time and essential epidemiological parameters, our approach is versatile and efficient, extending its utility beyond COVID-19.

摘要

背景

新发传染病对全球公共卫生构成重大威胁。及时发现和应对对于减轻此类疫情的传播至关重要。推断发病时间和流行病学特征对于加速早期干预至关重要,但在早期阶段准确预测这些参数仍然具有挑战性。

方法

我们引入了一种贝叶斯推断方法,通过状态空间建模,根据粒子马尔可夫链蒙特卡罗 (PMCMC) 方法,使用随机易感-暴露-感染-清除 (SEIR) 模型来进行传播动力学分析。我们的方法用于估计关键的流行病学参数,包括发病时间、传播率和恢复率。PMCMC 算法集成了 MCMC 和粒子滤波方法的优势,为近似似然函数提供了一种计算上可行且有效的方法,尤其是在计算上难以处理的情况下。

结果

为了验证所提出的方法,我们分别对中国武汉、上海和南京的 COVID-19 疫情进行了案例研究。使用早期病例报告,PMCMC 算法准确地预测了发病时间、关键流行病学参数和基本再生数。这些发现与经验研究和文献一致。

结论

本研究提出了一种用于及时调查新发传染病的稳健贝叶斯推断方法。通过准确估计发病时间和基本流行病学参数,我们的方法具有通用性和高效性,其应用不仅限于 COVID-19。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/675d/11140066/e4c392f70cfd/fpubh-12-1406566-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验