Suppr超能文献

使用相机位姿估计和摄影旅游对企鹅群体进行地理注册。

Penguin colony georegistration using camera pose estimation and phototourism.

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America.

Department of Ecology & Evolution, Stony Brook University, Stony Brook, New York, United States of America.

出版信息

PLoS One. 2024 Oct 30;19(10):e0311038. doi: 10.1371/journal.pone.0311038. eCollection 2024.

Abstract

Satellite-based remote sensing and uncrewed aerial imagery play increasingly important roles in the mapping of wildlife populations and wildlife habitat, but the availability of imagery has been limited in remote areas. At the same time, ecotourism is a rapidly growing industry and can yield a vast catalog of photographs that could be harnessed for monitoring purposes, but the inherently ad-hoc and unstructured nature of these images make them difficult to use. To help address this, a subfield of computer vision known as phototourism has been developed to leverage a diverse collection of unstructured photographs to reconstruct a georeferenced three-dimensional scene capturing the environment at that location. Here we demonstrate the use of phototourism in an application involving Antarctic penguins, sentinel species whose dynamics are closely tracked as a measure of ecosystem functioning, and introduce a semi-automated pipeline for aligning and registering ground photographs using a digital elevation model (DEM) and satellite imagery. We employ the Segment Anything Model (SAM) for the interactive identification and segmentation of penguin colonies in these photographs. By creating a textured 3D mesh from the DEM and satellite imagery, we estimate camera poses to align ground photographs with the mesh and register the segmented penguin colony area to the mesh, achieving a detailed representation of the colony. Our approach has demonstrated promising performance, though challenges persist due to variations in image quality and the dynamic nature of natural landscapes. Nevertheless, our method offers a straightforward and effective tool for the georegistration of ad-hoc photographs in natural landscapes, with additional applications such as monitoring glacial retreat.

摘要

卫星遥感和无人机图像在野生动物种群和野生动物栖息地的测绘中发挥着越来越重要的作用,但在偏远地区,图像的可用性有限。与此同时,生态旅游是一个快速发展的行业,它可以产生大量的照片,这些照片可以被用于监测目的,但这些图像本质上是临时的和非结构化的,因此很难使用。为了解决这个问题,计算机视觉的一个分支领域——摄影旅游学已经发展起来,利用各种非结构化的照片来重建一个地理参考的三维场景,捕捉该地点的环境。在这里,我们展示了摄影旅游学在一个涉及南极企鹅的应用中的应用,企鹅是作为衡量生态系统功能的指标而被密切跟踪的指示物种,并介绍了一种使用数字高程模型(DEM)和卫星图像对齐和注册地面照片的半自动管道。我们使用 Segment Anything Model(SAM)来交互式识别和分割这些照片中的企鹅栖息地。通过从 DEM 和卫星图像创建纹理化的 3D 网格,我们估计相机姿势,使地面照片与网格对齐,并将分割的企鹅栖息地区域注册到网格上,从而实现栖息地的详细表示。我们的方法已经显示出了有希望的性能,尽管由于图像质量的变化和自然景观的动态性质,仍然存在一些挑战。然而,我们的方法为自然景观中临时照片的地理配准提供了一种简单而有效的工具,还可以用于监测冰川退缩等其他应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验