Suppr超能文献

CCmiR:一种用于竞争性和合作性微小RNA结合预测的计算方法。

CCmiR: a computational approach for competitive and cooperative microRNA binding prediction.

作者信息

Ding Jun, Li Xiaoman, Hu Haiyan

机构信息

Department of Computer Science, University of Central Florida, Orlando, FL, USA.

Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, USA.

出版信息

Bioinformatics. 2018 Jan 15;34(2):198-206. doi: 10.1093/bioinformatics/btx606.

Abstract

MOTIVATION

The identification of microRNA (miRNA) target sites is important. In the past decade, dozens of computational methods have been developed to predict miRNA target sites. Despite their existence, rarely does a method consider the well-known competition and cooperation among miRNAs when attempts to discover target sites. To fill this gap, we developed a new approach called CCmiR, which takes the cooperation and competition of multiple miRNAs into account in a statistical model to predict their target sites.

RESULTS

Tested on four different datasets, CCmiR predicted miRNA target sites with a high recall and a reasonable precision, and identified known and new cooperative and competitive miRNAs supported by literature. Compared with three state-of-the-art computational methods, CCmiR had a higher recall and a higher precision.

AVAILABILITY AND IMPLEMENTATION

CCmiR is freely available at http://hulab.ucf.edu/research/projects/miRNA/CCmiR.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

识别微小RNA(miRNA)的靶位点很重要。在过去十年中,已经开发了数十种计算方法来预测miRNA靶位点。尽管有这些方法,但在尝试发现靶位点时,很少有方法考虑到miRNA之间众所周知的竞争与合作关系。为了填补这一空白,我们开发了一种名为CCmiR的新方法,该方法在统计模型中考虑了多个miRNA的合作与竞争,以预测它们的靶位点。

结果

在四个不同的数据集上进行测试时,CCmiR预测miRNA靶位点具有较高的召回率和合理的精度,并识别出文献支持的已知和新的合作与竞争miRNA。与三种最先进的计算方法相比,CCmiR具有更高的召回率和精度。

可用性与实现

CCmiR可在http://hulab.ucf.edu/research/projects/miRNA/CCmiR免费获取。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

2
TarPmiR: a new approach for microRNA target site prediction.TarPmiR:一种预测微小RNA靶位点的新方法。
Bioinformatics. 2016 Sep 15;32(18):2768-75. doi: 10.1093/bioinformatics/btw318. Epub 2016 May 20.
3
MicroRNA modules prefer to bind weak and unconventional target sites.微小RNA模块倾向于结合弱的和非常规的靶位点。
Bioinformatics. 2015 May 1;31(9):1366-74. doi: 10.1093/bioinformatics/btu833. Epub 2014 Dec 18.
9
miR-EdiTar: a database of predicted A-to-I edited miRNA target sites.miR-EdiTar:一个预测的 A 到 I 编辑 miRNA 靶位点数据库。
Bioinformatics. 2012 Dec 1;28(23):3166-8. doi: 10.1093/bioinformatics/bts589. Epub 2012 Oct 7.
10
Prediction of therapeutic microRNA based on the human metabolic network.基于人类代谢网络的治疗性 microRNA 预测
Bioinformatics. 2014 Apr 15;30(8):1163-1171. doi: 10.1093/bioinformatics/btt751. Epub 2014 Jan 7.

本文引用的文献

1
TarPmiR: a new approach for microRNA target site prediction.TarPmiR:一种预测微小RNA靶位点的新方法。
Bioinformatics. 2016 Sep 15;32(18):2768-75. doi: 10.1093/bioinformatics/btw318. Epub 2016 May 20.
2
Quantifying the strength of miRNA-target interactions.量化微小RNA与靶标的相互作用强度。
Methods. 2015 Sep 1;85:90-99. doi: 10.1016/j.ymeth.2015.04.012. Epub 2015 Apr 16.
3
MicroRNA modules prefer to bind weak and unconventional target sites.微小RNA模块倾向于结合弱的和非常规的靶位点。
Bioinformatics. 2015 May 1;31(9):1366-74. doi: 10.1093/bioinformatics/btu833. Epub 2014 Dec 18.
5
Common features of microRNA target prediction tools.微小RNA靶标预测工具的共同特征。
Front Genet. 2014 Feb 18;5:23. doi: 10.3389/fgene.2014.00023. eCollection 2014.
7
ComiR: Combinatorial microRNA target prediction tool.ComiR:组合 microRNA 靶标预测工具。
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W159-64. doi: 10.1093/nar/gkt379. Epub 2013 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验